19 research outputs found

    Developing an algorithm for rapid assessment of living standards and quality of life of the population in the region

    Get PDF
    The article presents the rapid assessment methodology that allows analysts to carry out qualitative monitoring of the living standards of the population using a wide range of methods for statistics processing (factor analysis, cluster analysis, discriminant analysis, method of combining indicators of different dimensions). This methodology is characterized by the high speed of mathematical calculations, availability to users with different skill levels and universal applicability to various study objects. The rapid assessment method is intended for screening the living standards of the population and activity quality of the territorial authorities, taking into account a different set of indicators. This article offers the author’s indicator system for assessing the living standards and quality of life of the population. The methodology algorithm describes flowcharts of the index method for combining statistical observations of different dimensions, which make it possible to automate the process of territory ranking. The study covers 12 urban districts and 43 municipal districts of Rostov Oblast. The methodology described in the article will help eliminate a subjective factor while monitoring, rationally distribute financial resources allocated annually by the authorities to support programs for socio-economic development of the territory, increase the economic efficiency and implementation speed of innovative projects that have a direct impact on the living standards and quality of life of the population

    ΠžΡΠΎΠ±Π΅Π½ΠΎΡΡ‚ΠΈ сорбции фосфатов Π³ΠΈΠ΄Ρ€Π°Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ оксидами элСмСнтов III ΠΈ IV Π³Ρ€ΡƒΠΏΠΏ

    Get PDF
    ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ співосадТСння Π· Π²ΠΎΠ΄Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π² синтСзовано Π±Ρ–Π½Π°Ρ€Π½Ρ– ΡΡƒΠΌΡ–ΡˆΡ–, які ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ Π³Ρ–Π΄Ρ€Π°Ρ‚ΠΎΠ²Π°Π½Ρ– оксиди Ρ‚ΠΈΡ‚Π°Π½Ρƒ, Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ, Π»Π°Π½Ρ‚Π°Π½Ρƒ Ρ‚Π° Ρ†Π΅Ρ€Ρ–ΡŽ Π· Ρ€Ρ–Π·Π½ΠΈΠΌ ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π². Π€Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½Ρ– властивості Π±ΡƒΠ»ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ– Ρ–Π· залучСнням Ρ€Π΅Π½Ρ‚Π³Π΅Π½Ρ–Π²ΡΡŒΠΊΠΎΡ— Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ—, ΡΠΊΠ°Π½ΡƒΡŽΡ‡ΠΎΡ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΡ— мікроскопії, Π†Π§-спСктроскопії, ΠΏΠΎΡ€ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ— Ρ– ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ титрування. Π’ΠΈΠ²Ρ‡Π΅Π½ΠΎ сорбційну Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π±Ρ–Π½Π°Ρ€Π½ΠΈΡ… ΡΡƒΠΌΡ–ΡˆΠ΅ΠΉ відносно фосфат-ΠΉΠΎΠ½Ρ–Π². Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½Ρ– ΡΡƒΠΌΡ–ΡˆΡ– Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡŒΡΡ ΠΌΠ΅Π·ΠΎΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡŽ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΎΡŽ Π· Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΎΠΌ ΠΏΠΎΡ€ 1-3,2 Π½ΠΌ Ρ‚Π° ΠΏΠΈΡ‚ΠΎΠΌΠΎΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅ΡŽ 242-432 ΠΌΒ²/Π³. Π— використанням Π†Π§-спСктроскопії Π·Π½Π°ΠΉΠ΄Π΅Π½ΠΎ, Ρ‰ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌ вилучСння фосфатів лантанвмісними ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Π°ΠΌΠΈ Π· Π²ΠΎΠ΄Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π² ΠΏΡ€ΠΎΡ‚Ρ–ΠΊΠ°Ρ” як Π°Π½Ρ–ΠΎΠ½ΠΎΠΎΠ±ΠΌΡ–Π½Π½ΠΈΠΉ процСс Π·Π° участі Π³Ρ–Π΄Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½ΠΈΡ… Π³Ρ€ΡƒΠΏ. Π’Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π΄ΠΎ Π΄Π°Π½ΠΈΡ… ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ титрування, дослідТСні Π±Ρ–Π½Π°Ρ€Π½Ρ– систСми Ρ” Π°ΠΌΡ„ΠΎΠ»Ρ–Ρ‚Π°ΠΌΠΈ. ΠΠ°ΠΉΠ±Ρ–Π»ΡŒΡˆΡƒ об’ємну Ρ”ΠΌΠ½Ρ–ΡΡ‚ΡŒ ΠΌΠ°Ρ” систСма Al(OH)₃-La(OH)₃, Ρƒ якій ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Π·Π΄Π°Ρ‚Π½ΠΈΡ… Π΄ΠΎ ΠΎΠ±ΠΌΡ–Π½Ρƒ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ близько 9 ммоль/Π³ Ρƒ кислому Ρ‚Π° 6 ммоль/Π³ Ρƒ Π»ΡƒΠΆΠ½ΠΎΠΌΡƒ сСрСдовищах. МаксимальнС значСння сорбційної ємності відносно фосфат-ΠΉΠΎΠ½Ρ–Π² ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ 522,5 ΠΌΠ³/Π³ (ΠΏΡ€ΠΈ pH β‰ˆ 2,5) для систСми Al(OH)₃-La(OH)₃ Ρ‚Π° 294,5 ΠΌΠ³/Π³ (ΠΏΡ€ΠΈ pH β‰ˆ 9) для систСми Al(OH)₃-Ce(OH)β‚„.Binary mixtures containing hydrous oxides of titanium, aluminum, lanthanum, and cerium with various ratio of ingredients have been synthesized by means of co-precipitation method from water solutions. The physical and chemical properties of the target materials have been characterized by X-ray diffraction, scanning electron microscopy, IR spectroscopy, porosity studies and pH titration. The sorption affinity of binary mixtures towards phosphate ions has been studied. The synthesized binary mixtures have a mezoporous structure with the pore size of 1-3,2 nm and the specific surface area of 242-432 mΒ²/g. IR spectroscopy has shown that a mechanism of removal of phosphates with water solution by lanthanum containing materials is caused by the anion exchange process with participation of hydroxyl groups. pH titration has shown that binary mixtures are ampholytes. The mixture of Al(OH)₃-La(OH)₃ has the maximal exchange capacity of 9 mmol/g in acidic media and 6 mmol/g in alkaline media. Maximal exchange capacities towards phosphate ions are 522,5 mg/g (pH β‰ˆ 2,5) for Al(OH)₃-La(OH)₃ and 294,5 mg/g (pH β‰ˆ 9) for Al(OH)₃-Ce(OH)β‚„.ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ соосаТдСния ΠΈΠ· Π²ΠΎΠ΄Π½Ρ‹Ρ… растворов синтСзированы Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Π΅ смСси, содСрТащиС Π³ΠΈΠ΄Ρ€Π°Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ оксиды Ρ‚ΠΈΡ‚Π°Π½Π°, алюминия, Π»Π°Π½Ρ‚Π°Π½Π° ΠΈ цСрия с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ². Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС свойства ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ рСнтгСноскопии, ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии, ИК-спСктроскопии, ΠΏΠΎΡ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ потСнциомСтричСского титрования. Π˜Π·ΡƒΡ‡Π΅Π½Π° сорбционная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… смСсСй ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ фосфат-ΠΈΠΎΠ½Π°ΠΌ. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ смСси Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ мСзопористой структурой с Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΏΠΎΡ€ 1-3,2 Π½ΠΌ ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ 242-432 ΠΌΒ²/Π³. Π‘ использованиСм ИК-спСктроскопии Π½Π°ΠΉΠ΄Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ извлСчСния фосфатов лантансодСрТащими ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌΠΈ ΠΈΠ· Π²ΠΎΠ΄Π½Ρ‹Ρ… растворов обусловлСн Π°Π½ΠΈΠΎΠ½Π½Ρ‹ΠΌ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠΌ с участиСм Π³ΠΈΠ΄Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ. Богласно Π΄Π°Π½Π½Ρ‹ΠΌ потСнциомСтричСского титрования, исслСдованныС Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Π΅ систСмы ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π°ΠΌΡ„ΠΎΠ»ΠΈΡ‚Π°ΠΌΠΈ. НаибольшСй ΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠΉ Π΅ΠΌΠΊΠΎΡΡ‚ΡŒΡŽ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ систСма Al(OH)₃-La(OH)₃, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ количСство способных ΠΊ ΠΎΠ±ΠΌΠ΅Π½Ρƒ ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² составляСт ΠΎΠΊΠΎΠ»ΠΎ 9 ммоль/Π³ Π² кислой ΠΈ 6 ммоль/Π³ Π² Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ срСдах. ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния сорбционной Смкости ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ фосфат-ΠΈΠΎΠ½Π°ΠΌ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 522,5 ΠΌΠ³/Π³ (ΠΏΡ€ΠΈ pH β‰ˆ 2.5) для систСмы Al(OH)₃-La(OH)₃ ΠΈ 294,5 ΠΌΠ³/Π³ (ΠΏΡ€ΠΈ pH β‰ˆ 9) для систСмы Al(OH)₃-Ce(OH)β‚„

    Борбция фосфатов оксигидратами ΠΆΠ΅Π»Π΅Π·Π° (Π†Π†Π†) Ρ€Π°Π·Π½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ

    Get PDF
    ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ осадТСння синтСзовано FeOOH (Π°ΠΌΠΎΡ€Ρ„Π½ΠΈΠΉ оксигідроксид Π·Π°Π»Ρ–Π·Π°), Ξ±-FeOOH (Π³Π΅Ρ‚ΠΈΡ‚) Ρ– Ξ³-FeOOH (Π»Π΅ΠΏΡ–Π΄ΠΎΠΊΡ€ΠΎΠΊΡ–Ρ‚). Π€Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ синтСзованих сполук Π±ΡƒΠ»ΠΎ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ Ρ–Π· залучСнням Ρ€Π΅Π½Ρ‚Π³Π΅Π½Ρ–Π²ΡΡŒΠΊΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ, ΠΏΠΎΡ€ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ—, рН-ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ—. Π—Π° допомогою Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΠ³Ρ€Π°ΠΌ встановлСно, Ρ‰ΠΎ Ξ±-FeOOH Ρ– Ξ³-FeOOH ΠΌΠ°ΡŽΡ‚ΡŒ кристалічну структуру, Ρ‚ΠΎΠ΄Ρ– як FeOOH Π°ΠΌΠΎΡ€Ρ„Π½ΠΈΠΉ. Π’ΠΈΠ²Ρ‡Π΅Π½ΠΎ сорбційну Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ оксигідратів Π·Π°Π»Ρ–Π·Π° Ρ€Ρ–Π·Π½ΠΎΡ— ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— відносно фосфат-ΠΉΠΎΠ½Ρ–Π². Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½Ρ– оксигідрати Π·Π°Π»Ρ–Π·Π° ΠΌΠ°ΡŽΡ‚ΡŒ мСзопористу структуру Π· ΠΏΠ΅Ρ€Π΅Π²Π°ΠΆΠ½ΠΈΠΌΠΈ Ρ€ΠΎΠ·ΠΌΡ–Ρ€Π°ΠΌΠΈ ΠΏΠΎΡ€ 2 Π½ΠΌ для FeOOH (Π°ΠΌΠΎΡ€Ρ„Π½ΠΎΠ³ΠΎ)Ρ– Ξ³-FeOOH Ρ‚Π° 16 Π½ΠΌ для Ξ±-FeOOH. рН-ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ– дослідТСння ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‰ΠΎ FeOOH (Π°ΠΌΠΎΡ€Ρ„Π½ΠΈΠΉ) Ρ” Π°ΠΌΡ„ΠΎΠ»Ρ–Ρ‚ΠΎΠΌ Ρ–Π· максимальною ΠΎΠ±ΠΌΡ–Π½Π½ΠΎΡŽ Ρ”ΠΌΠ½Ρ–ΡΡ‚ΡŽ 3 ммоль/Π³ Ρƒ кислому Ρ‚Π° 3,5 ммоль/Π³ Ρƒ Π»ΡƒΠΆΠ½ΠΎΠΌΡƒ сСрСдовищах. ΠŸΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½Π° ΠΎΡ†Ρ–Π½ΠΊΠ° сорбційної здатності оксигідратів Π·Π°Π»Ρ–Π·Π° Ρ€Ρ–Π·Π½ΠΎΡ— ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— відносно фосфат-ΠΉΠΎΠ½Ρ–Π² виявила, Ρ‰ΠΎ Π½Π°ΠΉΠΊΡ€Π°Ρ‰Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ ΠΌΠ°Ρ” FeOOH (Π°ΠΌΠΎΡ€Ρ„Π½ΠΈΠΉ), сорбційна Ρ”ΠΌΠ½Ρ–ΡΡ‚ΡŒ якого Π΄ΠΎΡ€Ρ–Π²Π½ΡŽΡ” 237,5 ΠΌΠ³/Π³ Ρƒ кислому Ρ– 104,5 ΠΌΠ³/Π³ Ρƒ Π»ΡƒΠΆΠ½ΠΎΠΌΡƒ сСрСдовищах.By means of precipitation method FeOOH (amorphous ferric oxyhydrate), Ξ±-FeOOH (goethite) and Ξ³-FeOOH (lepidocrocite) have been synthesized. Physical-and-chemical parameters of the synthesized compounds have been characterized using X-ray diffraction, porosity studies, pH titration. With the aid of XRD it was found that Ξ±-FeOOH and Ξ³-FeOOH have crystalline structure, while FeOOH is amorphous. The sorption affinity of ferric oxyhydrates of various crystalline structure towards phosphate ions has been studied. The synthesized oxyhydrates have a mezoporous structure with the pore size of 2 nm for FeOOH (amorphous), Ξ³-FeOOH and 16 nm for Ξ±-FeOOH. рН titration has shown that FeOOH (amorphous) is an ampholite with the maximal exchange capacity of 3 mmol/g in acidic media and 3,5 mmol/g in alkaline media. The comparison of the sorption affinity of the ferric oxyhydrates with various crystalline structures towards phosphate ions shows that FeOOH (amorphous) has the best parameters, and its sorption capacity reaches 237,5 mg/g in acidic media and 104,5 mg/g in alkaline media.ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ осаТдСния синтСзированы FeOOH (Π°ΠΌΠΎΡ€Ρ„Π½Ρ‹ΠΉ оксигидрат ΠΆΠ΅Π»Π΅Π·Π°), Ξ±-FeOOH (Π³Π΅Ρ‚ΠΈΡ‚) ΠΈ Ξ³-FeOOH (Π»Π΅ΠΏΠΈΠ΄ΠΎΠΊΡ€ΠΎΠΊΠΈΡ‚). Π€ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ синтСзированных соСдинСний Π±Ρ‹Π»ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ с использованиСм рСнтгСновских исслСдований, ΠΏΠΎΡ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, рН-ΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΠ³Ρ€Π°ΠΌΠΌ установлСно, Ρ‡Ρ‚ΠΎ Ξ±-FeOOH ΠΈ Ξ³-FeOOH ΠΈΠΌΠ΅ΡŽΡ‚ ΠΊΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ структуру, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ FeOOH - Π°ΠΌΠΎΡ€Ρ„Π΅Π½. Π˜Π·ΡƒΡ‡Π΅Π½Π° сорбционная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ оксигидратов ΠΆΠ΅Π»Π΅Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ фосфат-ΠΈΠΎΠ½Π°ΠΌ. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ оксигидраты ΠΆΠ΅Π»Π΅Π·Π° ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ мСзопористой структурой с ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΏΠΎΡ€ 2 Π½ΠΌ для FeOOH (Π°ΠΌΠΎΡ€Ρ„Π½ΠΎΠ³ΠΎ), Ξ³-FeOOH ΠΈ 16 Π½ΠΌ для Ξ±-FeOOH. рН-мСтричСскиС исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ FeOOH (Π°ΠΌΠΎΡ€Ρ„Π½Ρ‹ΠΉ) являСтся Π°ΠΌΡ„ΠΎΠ»ΠΈΡ‚ΠΎΠΌ с максимальной ΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠΉ Π΅ΠΌΠΊΠΎΡΡ‚ΡŒΡŽ 3 ммоль/Π³ Π² кислой ΠΈ 3,5 ммоль/Π³ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ срСдах. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° сорбционной способности оксигидратов ΠΆΠ΅Π»Π΅Π·Π° Ρ€Π°Π·Π½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ фосфат-ΠΈΠΎΠ½Π°ΠΌ выявила, Ρ‡Ρ‚ΠΎ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ FeOOH (Π°ΠΌΠΎΡ€Ρ„Π½Ρ‹ΠΉ), сорбционная Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ достигаСт 237,5 ΠΌΠ³/Π³ Π² кислой ΠΈ 104,5 ΠΌΠ³/Π³ Π² Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ срСдах

    Mechanical and Water Absorption Properties of Waterborne Polyurethane/Graphene Oxide Composites

    No full text
    Nanocomposites based on waterborne polyurethane (WPU) and graphene oxide (GO) have been synthesized and characterized. It was found that after the incorporation of GO, WPU films became mechanically more rigid, and the Young’s modulus increased by almost six times. It is shown that the lateral size of GO sheets influences the mechanical properties of WPU/GO composites. In particular, composites with larger lateral size of GO sheets have higher values of Young’s modulus. Additionally, if the mechanical properties are improved with the addition of GO additive, then water absorption decreases for WPU modified with small GO sheets whereas it increases for WPU modified with large GO sheets. Possible reasons for this behavior are discussed

    Mechanical and Thermophysical Properties of Epoxy Nanocomposites with Titanium Dioxide Nanoparticles

    No full text
    The introduction of nanoparticles and their homogeneous distribution in the polymer matrix, as well as their size, can have a significant effect on the mechanical properties of composite materials. In this work, we studied the mechanical characteristics of TiO2/epoxy nanocomposites with different contents and sizes of nanoparticles. The preparation of nanocomposites was carried out by a stepwise curing (at 90 and 160 Β°C) of ED-20 dianic epoxy resin in the presence of an aromatic hardener with the addition of titanium (IV) dioxide nanoparticles preliminarily synthesized by the plasma-chemical method. Ultrasonic dispersion was used to achieve a uniform distribution of nanoparticles in the polymer matrix. The chemical and phase composition, the structure of the as-synthesized TiO2 nanoparticles, and the resulting epoxy nanocomposites were characterized by elemental analysis, X-ray diffraction, transmission and scanning electron microscopy, and infrared spectroscopy. The mechanical properties of the nanocomposites were determined by the static tensile test, and the impact toughness was determined by the Charpy method. The glass transition temperature and thermal stability of the TiO2/epoxy nanocomposites were studied by thermal analysis methods. The formation of an interfacial layer between the TiO2 nanoparticles and an epoxy matrix has been shown for the first time by spectral methods. It is shown that the mode of curing and ultrasonic dispersion used, as well as varying the content and dispersity of the TiO2 nanoparticles, make it possible to obtain epoxy nanocomposites with simultaneously improved deformation-strength characteristics and impact strength values

    Novel Self-Healing Metallocopolymers with Pendent 4-Phenyl-2,2β€²:6β€²,2β€³-terpyridine Ligand: Kinetic Studies and Mechanical Properties

    No full text
    We report here our successful attempt to obtain self-healing supramolecular hydrogels with new metal-containing monomers (MCMs) with pendent 4-phenyl-2,2β€²:6β€²,2β€³-terpyridine metal complexes as reversible moieties by free radical copolymerization of MCMs with vinyl monomers, such as acrylic acid and acrylamide. The resulting metal-polymer hydrogels demonstrate a developed system of hydrogen, coordination and electron-complementary π–π stacking interactions, which play a critical role in achieving self-healing. Kinetic data show that the addition of a third metal-containing comonomer to the system decreases the initial polymerization rate, which is due to the specific effect of the metal group located in close proximity of the active center on the growth of radicals
    corecore