387 research outputs found

    Ground-state of graphene in the presence of random charged impurities

    Full text link
    We calculate the carrier density dependent ground state properties of graphene in the presence of random charged impurities in the substrate taking into account disorder and interaction effects non-perturbatively on an equal footing in a self-consistent theoretical formalism. We provide detailed quantitative results on the dependence of the disorder-induced spatially inhomogeneous two-dimensional carrier density distribution on the external gate bias, the impurity density, and the impurity location. We find that the interplay between disorder and interaction is strong, particularly at lower impurity densities. We show that for the currently available typical graphene samples, inhomogeneity dominates graphene physics at low (1012\lesssim 10^{12} cm2^{-2}) carrier density with the density fluctuations becoming larger than the average density.Comment: Final version, accepted for publication in Phys. Rev. Let

    Density-Functional Theory of Graphene Sheets

    Full text link
    We outline a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for graphene sheets that treats slowly-varying inhomogeneous external potentials and electron-electron interactions on an equal footing. The theory is able to account for the the unusual property that the exchange-correlation contribution to chemical potential increases with carrier density in graphene. Consequences of this property, and advantages and disadvantages of using the DFT approach to describe it, are discussed. The approach is illustrated by solving the Kohn-Sham-Dirac equations self-consistently for a model random potential describing charged point-like impurities located close to the graphene plane. The influence of electron-electron interactions on these non-linear screening calculations is discussed at length, in the light of recent experiments reporting evidence for the presence of electron-hole puddles in nearly-neutral graphene sheets.Comment: 11 pages, 9 figures, submitted. High-quality figures can be requested to the author

    Local density of states and scanning tunneling currents in graphene

    Full text link
    We present exact analytical calculations of scanning tunneling currents in locally disordered graphene using a multimode description of the microscope tip. Analytical expressions for the local density of states (LDOS) are given for energies beyond the Dirac cone approximation. We show that the LDOS at the AA and BB sublattices of graphene are out of phase by π\pi implying that the averaged LDOS, as one moves away from the impurity, shows no trace of the 2qF2q_F (with qFq_F the Fermi momentum) Friedel modulation. This means that a STM experiment lacking atomic resolution at the sublattice level will not be able of detecting the presence of the Friedel oscillations [this seems to be the case in the experiments reported in Phys. Rev. Lett. {\bf 101}, 206802 (2008)]. The momentum maps of the LDOS for different types of impurities are given. In the case of the vacancy, 2qF2q_F features are seen in these maps. In all momentum space maps, KK and K+KK+K^\prime features are seen. The K+KK+K^\prime features are different from what is seen around zero momentum. An interpretation for these features is given. The calculations reported here are valid for chemical substitution impurities, such as boron and nitrogen atoms, as well as for vacancies. It is shown that the density of states close to the impurity is very sensitive to type of disorder: diagonal, non-diagonal, or vacancies. In the case of weakly coupled (to the carbon atoms) impurities, the local density of states presents strong resonances at finite energies, which leads to steps in the scanning tunneling currents and to suppression of the Fano factor.Comment: 21 pages. Figures 6 and 7 are correctly displayed in this new versio

    Electronic properties of bilayer and multilayer graphene

    Full text link
    We study the effects of site dilution disorder on the electronic properties in graphene multilayers, in particular the bilayer and the infinite stack. The simplicity of the model allows for an easy implementation of the coherent potential approximation and some analytical results. Within the model we compute the self-energies, the density of states and the spectral functions. Moreover, we obtain the frequency and temperature dependence of the conductivity as well as the DC conductivity. The c-axis response is unconventional in the sense that impurities increase the response for low enough doping. We also study the problem of impurities in the biased graphene bilayer.Comment: 36 pages, 42 figures, references adde

    Resonant Visible Light Modulation with Graphene

    Get PDF
    Fast modulation and switching of light at visible and near-infrared (vis-NIR) frequencies is of utmost importance for optical signal processing and sensing technologies. No fundamental limit appears to prevent us from designing wavelength-sized devices capable of controlling the light phase and intensity at gigaherts (and even terahertz) speeds in those spectral ranges. However, this problem remains largely unsolved, despite recent advances in the use of quantum wells and phase-change materials for that purpose. Here, we explore an alternative solution based upon the remarkable electro-optical properties of graphene. In particular, we predict unity-order changes in the transmission and absorption of vis-NIR light produced upon electrical doping of graphene sheets coupled to realistically engineered optical cavities. The light intensity is enhanced at the graphene plane, and so is its absorption, which can be switched and modulated via Pauli blocking through varying the level of doping. Specifically, we explore dielectric planar cavities operating under either tunneling or Fabry-Perot resonant transmission conditions, as well as Mie modes in silicon nanospheres and lattice resonances in metal particle arrays. Our simulations reveal absolute variations in transmission exceeding 90% as well as an extinction ratio >15 dB with small insertion losses using feasible material parameters, thus supporting the application of graphene in fast electro-optics at vis-NIR frequencies.Comment: 17 pages, 13 figures, 54 reference

    Egg retention and dispersal activity in the parasitoid wasp, Trichogramma principium

    Get PDF
    Effects of egg retention on movement and dispersal activity of Trichogramma principium (Hymenoptera, Trichogrammatidae) females were investigated under laboratory conditions. Individual females were observed during one minute in the absence of hosts. Movement activity and dispersal rate were estimated by the length of the track and by the distance from the start point, respectively. Before the test, all wasps during 2 – 4 days were presented with a possibility to parasitize a factitious laboratory host, Sitotroga cerealella Oliv. (Lepidoptera, Gelechiidae). Wasps that had parasitized before the test show significant reduction of spontaneous walking activity and dispersal rate when compared with females that refused to parasitize the non-preferred host (i.e. manifested egg retention). This effect cannot be considered as a direct arrestment reaction to the host because during the test period, no hosts were provided. Thus, egg retention results not only in temporal spread, but also in more intensive spatial dispersal of a group of simultaneously emerged females
    corecore