274 research outputs found

    RĂ©vision de l’espĂšce Homo erectus (Dubois, 1893)

    Get PDF
    L’hypodigme de Homo erectus est un problĂšme qui restait non rĂ©solu. Les dĂ©saccords Ă©taient davantage fondĂ©s sur la chronologie que sur la morphologie, une mĂ©thodologie ne reposant ni sur la similitude globale ni sur la position chronologique a Ă©tĂ© nĂ©cessaire pour clarifier les questions taxinomiques. Ainsi a-t-il Ă©tĂ© entrepris d’identifier des caractĂšres apomorphiques pour Homo erectus. La premiĂšre Ă©tape consiste Ă  rechercher des critĂšres permettant de dĂ©finir l’espĂšce comme un clade ou un grade ; c’est-Ă -dire une unitĂ© monophylĂ©tique ou comme un niveau Ă©volutif archaĂŻque de l’espĂšce Homo sapiens. La reconstruction du patron Ă©volutif devant ĂȘtre ensuite confrontĂ© avec des donnĂ©es indĂ©pendantes (datation, biogĂ©ographie) afin de permettre de restituer un scĂ©nario Ă©volutif cohĂ©rent. Selon plusieurs auteurs (Stringer, 1984 ; Hublin, 1986 ; Kennedy, 1991 ; Brauer et Mbua, 1992) l’existence de caractĂšre apomorphe pour Homo erectus n’est pas dĂ©montrĂ©e. Un rĂ©examen de la calvaria des hommes fossiles a Ă©tĂ© rĂ©alisĂ© ici sous l’abord de la cladistique pour dĂ©finir le niveau taxinomique et phylogĂ©nĂ©tique de l’espĂšce Homo erectus (Dubois, 1893). Des caractĂšres morphologiques et des donnĂ©es mĂ©triques originales ont Ă©tĂ© proposĂ©es quand dans le mĂȘme temps une analyse et un contrĂŽle des donnĂ©es publiĂ©es ont Ă©tĂ© rĂ©alisĂ©es. Dans le but d’utiliser le maximum de l’information disponible dans l’étude phylogĂ©nĂ©tique des fossiles au niveau individuel, une technique de codage inĂ©dite a Ă©tĂ© Ă©laborĂ©e afin de permettre l’intĂ©gration des donnĂ©es continues en cladistique. L’objectif avouĂ© Ă©tait de pouvoir comparer les individus un Ă  un quand ce sont des spĂ©cimens et non des populations qui sont effectivement les objets de l’étude palĂ©oanthropologique. Il n’y a pas de raison de dĂ©cider a priori que des caractĂšres ne sont pas utiles pour distinguer diffĂ©rents groupes de taxon. Aussi les caractĂšres tant mĂ©triques que morphologiques ont ils Ă©tĂ© traitĂ©s. Les caractĂšres morphologiques peuvent dĂ©crire soit la position soit la taille d’un Ă©lĂ©ment relativement Ă  un autre. Ils peuvent ĂȘtre l’objet d’une dĂ©finition plus ou moins complexe d’élĂ©ments. Il est alors possible d’affirmer si cette dĂ©finition du caractĂšre est prĂ©sente ou absente. Lorsque des points homologues existent, il est prĂ©fĂ©rable de rĂ©aliser une mesure. Non que celle-ci soit plus objective qu’une description relative la taille ou Ă  la position, mais elle est plus aisĂ©ment reproductible et plusieurs Ă©tats de caractĂšre sont alors dĂ©celables. Cela permet de montrer oĂč les dimensions les plus pertinentes sont localisĂ©es (un ensemble peut ĂȘtre divisĂ© en plusieurs sous-ensembles et l’intensitĂ© de l’expression d’un caractĂšre peut changer au sein du sous-ensemble). Avant de prendre des mesures et de calculer des indices il faut cependant s’assurer que les points de rĂ©fĂ©rences sont des points anatomiques homologues. Les mĂ©thodes statistiques ou les analyses descriptives (analyse des correspondances, analyses factorielles) sont fondĂ©es sur la comparaison d’individus et de paramĂštres liĂ©s Ă  un barycentre obtenu par le calcul des valeurs propres de chaque individu de l’étude. L’utilisation de telles mĂ©thodes constitue un exercice de la similitude globale des phĂ©nĂ©ticiens, puisque ils expriment cette similitude Ă  partir de critĂšres gĂ©nĂ©rĂ©s par le poids de l’ensemble des individus Ă©tudiĂ©s. Une autre approche est plus typologique et rĂ©pond sans infĂ©rer de rĂ©sultat prĂ©alable Ă  une recherche selon une dĂ©marche agnostique. La mĂ©thode proposĂ©e ici est inspirĂ©e du «weigthing coding » de Thiele (1993), mais appliquĂ© au niveau individuel. La technique utilise un standard indĂ©pendant de l’ensemble des spĂ©cimens pris en compte. Ignorant quels sont les paramĂštres discriminants permettant une reconstruction phylogĂ©nĂ©tique, toutes les mesures rĂ©alisables entre points homologues ont Ă©tĂ© effectuĂ©s. Ainsi chaque mesure peut ĂȘtre mis en relation avec les autres (si ce n’était pas le cas, il faudrait s’interroger sur la fausse prĂ©cision de certains points crĂąniomĂ©triques). L’ensemble des mesures a Ă©tĂ© rĂ©alisĂ© pour calculer deux sortes d’indices : — type I (arc AB - corde AB) / corde AB — type II corde AB / corde CD. Les indices sont des donnĂ©es continues qui peuvent ĂȘtre transcrites dans une matrice afin d’ĂȘtre employĂ©s pour une analyse cladistique. Avant d’exposer la technique de codage, les propriĂ©tĂ©s mathĂ©matiques liĂ©es Ă  l’utilisation des indices doivent ĂȘtre discutĂ©es. Les indices sont des donnĂ©es relatives qui sont assez indĂ©pendantes de la taille globale (Olivier, 1974). Ils donnent des indications sur la taille relative. Ainsi, mĂȘme si les valeurs affines et non-affines des mesures ne peuvent ĂȘtre distinguĂ©es par l’utilisation d’indices (voir Bookstein, 1978), l’effet de la taille globale est amoindri. Une analyse est rĂ©alisĂ©e pour sĂ©lectionner les indices discriminants permettant de grouper ou de sĂ©parer les diffĂ©rents individus. Les paramĂštres communs Ă  l’ensemble des spĂ©cimens ne sont pas retenus car des individus et non des groupes constituĂ©s a priori sont pris en compte puisque le sujet de l’étude est de dĂ©terminer l’appartenance taxinomique et la position phylogĂ©nĂ©tique des spĂ©cimens. Seuls les indices situĂ©s en dehors du champ de variation de la population de rĂ©fĂ©rence sont retenus. Ainsi pour chaque indice, quand il y a superposition entre population de rĂ©fĂ©rence et l’ensemble des spĂ©cimens pris en compte, l’indice est considĂ©rĂ© comme exempt de toute signification phylogĂ©nĂ©tique du moins au sein du groupe Ă©tudiĂ©. Quand il y a une diffĂ©rence entre tout ou partie des spĂ©cimens et la population standard, les diffĂ©rences sont utilisĂ©es pour dĂ©terminer des classes de valeurs. A partir d’une valeur extrĂȘme (maximum ou minimum) pour le standard, des intervalles ayant une amplitude d’un Ă©cart type sont utilisĂ©s pour dĂ©finir la valeur de la classe L’utilisation d’un standard relie cette technique Ă  une «combination coding». Un groupe d’individus sera dĂ©fini par un espace Ă©gale Ă  un seul Ă©cart type de la population de rĂ©fĂ©rence. Ainsi, le nombre rĂ©el de groupes doit ĂȘtre mis en exergue mais en fin d’analyse, ce qui apparaĂźt comme Ă©tant en fait des sous-groupes peuvent ĂȘtre rĂ©unis a posteriori. Au contraire l’utilisation d’une amplitude de deux Ă©carts-types a tendance Ă  regrouper outre mesure les individus. Le procĂ©dĂ© employĂ© ici pour dĂ©finir des classes n’est qu’empirique et un contrĂŽle de la validitĂ© du nombre d’états de caractĂšres dĂ©finis a posteriori est possible ici aussi. Il y a peu de fossiles attribuĂ©s Ă  Homo erectus dont la face soit prĂ©servĂ©e. Davantage de mandibules sont affiliĂ©s Ă  Homo erectus, mais elles sont isolĂ©es. La dĂ©finition classique de Homo erectus est principalement basĂ©e sur les caractĂšres de la calvaria. La plupart des autres fragments anatomiques sont attribuĂ©s Ă  Homo erectus sur des critĂšres chronologiques plutĂŽt que morphologiques. Soixante six spĂ©cimens parmi lesquels Paranthropus boisei, Australopithecus africanus, Pan troglodytes, Gorilla gorilla et des hommes modernes permettent d’établir des classes correspondant aux Ă©tats de caractĂšres pour les donnĂ©es mĂ©triques. Six cent treize mesures ont Ă©tĂ© rĂ©alisĂ©es pour un crĂąne complet. Deux mille deux cent soixante quatre indices ont Ă©tĂ© calculĂ©s Ă  partir de ces donnĂ©es. Par comparaison du standard et de l’ensemble des spĂ©cimens pris en compte, il n’est pas possible de distinguer les hommes modernes de ceux-ci (Singes, AustralopithecinĂ©s et Homo) pour 1919 paramĂštres. Les distinctions ne sont possibles que pour 345 paramĂštres. Les caractĂšres morphologiques Ă©tudiĂ©s sont 123, rĂ©unis Ă  partir de la littĂ©rature anthropologique et d’observations personnelles. L’analyse anatomique des spĂ©cimens conduit Ă  prendre en compte un nombre inĂ©gal de critĂšres pour chaque os du crĂąne (182 pour le frontal, 25 morphologiques et 157 mĂ©triques ; 67 pour le pariĂ©tal, 16 et 51 ; 159 pour le temporal, 62 et 97 ; 60 pour l’occipital, 20 et 40). Ce fait est dĂ» au nombre inĂ©gal de points homologues prĂ©sents pour chaque type d’os, Ă  la complexitĂ© de chaque partie anatomique et Ă  la sĂ©lection des paramĂštres les plus discriminants en comparaison de l’homme moderne. L’illustration du procĂ©dĂ© suivi a Ă©tĂ© appliquĂ© Ă  un Ă©chantillon restreint Ă  35 spĂ©cimens permettant de mieux traiter le cas de Homo erectus. Le choix de ces spĂ©cimens a Ă©tĂ© guidĂ© par trois types de considĂ©rations : — Homo erectus et les spĂ©cimens attribuĂ©s Ă  Homo erectus offrant le plus d’informations anatomiques ; — les taxons affiliĂ©s Ă  Homo habilis d’une part et les Homo sapiens archaĂŻques d’autre part dans la mesure oĂč les trois taxons ne sont pas clairement distincts ; — quelques fossiles trĂšs incomplets mais situĂ©s au coeur de nombreux dĂ©bats ont Ă©tĂ© ajoutĂ©s aux spĂ©cimens prĂ©alablement retenus. Un codage mixte des Ă©tats de caractĂšres a Ă©tĂ© appliquĂ© aux 35 spĂ©cimens ainsi dĂ©finis. C’est-Ă -dire que des caractĂšres Ă  Ă©tats multiples ont Ă©tĂ© traitĂ©s de maniĂšre ordonnĂ©e et d’autres de maniĂšre non-ordonnĂ©e. Le choix de l’option du traitement des caractĂšres Ă  Ă©tats multiples (ordonnĂ©s ou non ordonnĂ©s) est basĂ© sur des observations d’individus d’ñge variĂ© tant pour la morphologie que pour les indices mĂ©triques rapportĂ©s. En ce qui concerne la morphologie, ce sont de jeunes individus de Pan troglodytes, Gorilla gorilla et Homo sapiens sapiens qui ont Ă©tĂ© Ă©tudiĂ©s. Il n’y a pas de problĂšme majeur de reconnaissance taxinomique pour ces individus. Pour ce qui est des donnĂ©es mĂ©triques, quand il a Ă©tĂ© possible de dĂ©terminer un gradient et une polaritĂ© des valeurs des indices au cours du dĂ©veloppement individuel, un agencement graduel a Ă©tĂ© transcrit par un codage ordonnĂ© alors qu’un agencement non graduel suppose qu’une valeur n’est pas forcĂ©ment situĂ©e avant une autre et qu’en consĂ©quence, l’indice doit ĂȘtre traitĂ© de maniĂšre non ordonnĂ©e. L’analyse rĂ©vĂšle que parmi les 345 indices mĂ©triques utilisĂ©s, 62 peuvent ĂȘtre polarisĂ©s en fonction de l’ñge individuel et par consĂ©quent codĂ©s de maniĂšre ordonnĂ©e. De ce thesaurus de donnĂ©es anatomiques est issu un arbre unique. Son homoplasie est forte mais du fait de l’importante quantitĂ© d’information prise en compte, il peut ĂȘtre considĂ©rĂ© comme une hypothĂšse phylogĂ©nĂ©tique prĂ©liminaire valable. Cet arbre montre un clade qui unit le spĂ©cimen-type de Homo erectus et divers spĂ©cimens permettant de proposer un hypodigme pour cette espĂšce. Celui-ci est principalement indonĂ©sien avec toutefois le spĂ©cimen africain KNMWT 15 000 qui en est le plus ancien reprĂ©sentant. Ainsi Homo erectus est bien une espĂšce mais son hypodigme est quelque peu diffĂ©rent de celui habituellement proposĂ© par les diffĂ©rents auteurs. Cette espĂšce est trĂšs proche de la souche commune d’avec Homo sapiens mais est caractĂ©risĂ©e par quelques autapomorphies correspondant ainsi Ă  la dĂ©finition d’un plĂ©sion. Il y a deux clades principaux. Le premier regroupe les spĂ©cimens africains autour du spĂ©cimen de Broken Hill (Homo rhodesiensis Woodward 1921) avec les spĂ©cimens asiatiques proches de la sĂ©rie de Ngandong (Homo soloensis Openoorth 1932), l’ensemble pouvant ĂȘtre nommĂ© Homo heidelbergensis, Schoetensack, 1908. Le second clade principal rassemble l’homme moderne, des Homo sapiens archaĂŻques et la lignĂ©e nĂ©andertalienne. Mais ces deux clades majeurs peuvent ĂȘtre rĂ©unis et nommĂ© Homo sapiens suivant en cela l’avis de Tobias (1985) qui utilise prĂ©fĂ©rentiellement les trinĂŽmes Homo sapiens soloensis pour la sĂ©rie de Ngandong et Homo sapiens rhodesiensis pour Broken Hill. Selon ce schĂ©ma, Homo sapiens serait un taxon fort ancien comme en attestent de rĂ©centes dĂ©couvertes de terrain (Bermudez de Castro et al., 1997 ; Gibbons, 1997 ; Abbate et al., 1998) avec concomitamment une interrogation nouvelle quand au(x) taxon(s) ayant colonisĂ© l’ancien monde. Avec un rebondissement nouveau grĂące aux dĂ©couvertes rĂ©centes de Dmanisi (Gabunia et al., 1999a et b). Nonobstant, le rĂ©sultat le plus robuste de l’analyse est l’existence d’une sĂ©quence paraphylĂ©tique pour Homo habilis qui peut, comme l’ont proposĂ© plusieurs auteurs (Stringer, 1986 ; Groves, 1989 ; Wood, 1994 ; Strait et al., 1997) ĂȘtre constituĂ© de plusieurs espĂšces. Au moins quatre espĂšces peuvent ĂȘtre reconnues : Homo rudolfensis (Alexeev, 1978) pour KNMER 1470 et Homo ergaster Groves et Mazak 1975 pour KNMER 1813 d’aprĂšs Groves, 1989 (p. 239). Les spĂ©cimens KNMER 3883 et KNMER 3773 ayant le mĂȘme niveau taxinomique, ils doivent ĂȘtre Ă©levĂ©s Ă  ce mĂȘme rang. Quand le patron phylogĂ©nĂ©tique est placĂ© dans son cadre chronologique, il semble qu’une radiation se soit produite en Afrique de l’est dĂ©clenchĂ©e par un changement climato-tectonique majeur entre 2,8 Ma. et 2,4 Ma. Ce fait est en accord avec un modĂšle thĂ©orique qui met en avant l’influence et la concordance de l’environnement sur l’évolution des hominidĂ©s (Coppens, 1975 ; Stanley, 1992 ; De Menocal et Bloemendal, 1995 ; Vrba, 1996).The hypodigm for Homo erectus is a problem which remains unresolved. Most disagreements are based on chronological rather than morphological data. A methodology based neither on simple global similarity nor on chronological position is required to clarify taxonomical questions. Therefore the identification of apomorphic features for Homo erectus has to be tried. The first step is to seek criteria allowing to define this species as a clade or as a grade; id est as a monophyletic unit or as an archaic evolutionary step of the species Homo sapiens. The reconstruction of this evolutionary pattern should be matched with other data (dating, biogeography) to allow to reconstruct a real evolutionary synopsis. According to several authors (Stringer, 1984; Hublin, 1986; Kennedy, 1991; Brauer and Mbua, 1992) the existence of autapomorphic features for Homo erectus is not proved. Nevertheless, a re-examination of the calvaria of human fossils is made in the light of cladistics to define the taxonomic and the phylogenetic ranks of the species Homo erectus (Dubois, 1893). New morphological features and unpublished metrical data are proposed at the same time that an analysis and a control of published morphological data were made. In the aim of using most of the information in phylogenic study about fossils at individual level, a coding methodology is proposed which allows to use continuous data in cladistics. The purpose of this new coding proposal is to be useful in paleoanthropology where most of the time the studied material is individuals and not populations. There is no reason to decide first that continuous characters are not useful to discriminate among groups of taxa. Morphological features can describe either the position or the size of an element next to another. They can cause a more specific and more complex definition, a precise combination of elements. It is then possible to assert, whether this definition of the feature is respected or not, that the feature is present or absent. When, for instance, the upper part of an anatomical area is larger than its lower part, to evaluate this criterion, it is better to use an index calculated from homologous points which relate to these both parts. This process allows a better definition of the states of the features. It shows where the most revealing dimensions are located (a set can be divided in many subsets and the intensity of a feature’s expression can change among the subset). Before taking measures and calculating indices, reference points must be guaranteed to be anatomically homologous. Statistical methods or descriptive analysis (correspondence analysis, factor analysis) are based on comparisons of individuals and parameters in relation to a barycenter obtained by the calculation of each specimen’s own values. The use of these methods of analysis constitutes an exercise of the pheneticians “total morphological pattern”, since they express a global similarity from the criterions generated by the global weight of the individuals who have been studied. Another approach is more typological. The method proposed in this book is influenced by the gap coding proposed by Thiele (1993), but applied at individual level. The method use a standard which is independent of all specimens taken into account as an average. Ignoring which of the most discriminant parameters allow the reconstruction of phylogeny, all the measurements existing between every reference points are taken into account. Thus each measure can be connected to another (if it cannot, then the “false” precision of some craniometric points should be questioned). The complete data are used to calculate indices. Two sorts of indices are proposed to be kept : — type I (arc AB - chord AB) / chord AB — type II chord AB / chord CD. The indices are continuous metrical data which must be transcribed in a matrix to be used in a cladistic analysis. Before explaining the coding method, mathematical properties linked to the index must be discussed. Indices are relative data. They are relatively independent from the global size (Olivier, 1974). They give indications on relative size. Thus, even if the affine or non-affine values of the measures cannot be distinguished by the use of simple indices (see Bookstein, 1978) the global size effect is weakened. Concerning the rigorous use of index, arguments on the rules which are to be adopted are still published (Atchley et al., 1976; Atchley et Anderson, 1978 versus Albrecht, 1978; Dodson, 1978; Hills, 1978). Those arguments have revealed that the index formulation in logarithmic form usually allows to use them without any problem in the sight of the Laplace-Gauss law. So for a given feature, if the normality is not respected in the reference set then it is not taken into account. An analysis is realized to select the discriminant index, those allowing the grouping or the splitting of different individuals. The common parameters to all the specimens are not required to distinguish the specimens. Individuals instead of a priori constituted sets of individuals are taken into account since the subject of the study is to determine the taxonomic belonging and the phylogenetic position of the specimens. Only indices outside the variation of the reference population are kept as discriminant. Thus, for each index when there is a superposition between the reference population and the several specimens taken into account, the index is considered as free from any phylogenetic significance at least within the defined group. When there is different values between specimens and the standard, the differences are used to determine classes. From the extreme value observed (maximum or minimum) for the standard, gaps with an amplitude of one standard deviations are used to define the class. The use of a standard connects this method to the combination coding. A group of individuals will be defined by a space equal to only one standard deviation of the standard population. So the number of real groups should be emphasized but in the end of the analysis such “real” - subgroups- can be linked. To the contrary, use of a double standard deviation space to define individuals group tend to lump “real” subgroups. The process uses to define class for grouping is not founded on any theoretical a priori. It is only a mathematic way to lump specimens in groups. There isn’t numerous specimens with preserved face which are affiliated to Homo erectus. Further more mandibles are affiliated to Homo erectus, but there are isolated. Classical definition of Homo erectus is mainly founded on feature from the calvaria. Most of the other anatomical fragments are allocated to Homo erectus according to their dating not to their morphology. Sixty six specimens within Paranthropus boisei, Australopithecus africanus, Pan troglodytes, Gorilla gorilla species and modern humans allowed to establish classes corresponding to characters states for metrical data. Six hundred and thirteen measurements are taken for a complete skull. Two thousand two hundred and sixty four indices are calculated from these data. By comparison of the standard and the whole specimens taken into account, it is not possible to distinguish modern humans from them (Apes, Australopithecine and Homo) for 1919 parameters. Distinctions are able for only 345 parameters. Morphological characters sum 123, collected according to anthropological literature and personal observations. The anatomical analysis of the specimens leads to consider unequal number of criteria for each bone of the skull (182 criteria for the frontal bone, 25 morphological data and 157 metrical data; 67 for the parietal bone, 16 and 51; 159 for the temporal bone, 62 and 97; 60 for the occipital bone, 20 and 40). This fact is due to the unequal number of homologous reference points present on each bone, to the difference of the complexity of each anatomical part and to the selection of the most discriminant parameters compared to modern humans taken as reference. The main illustration of the exposed process is proposed for a sample restricted to 35 specimens dealing with the case of Homo erectus. The choice of the specimens is guided by three main considerations: — Homo erectus and specimens affiliated to Homo erectus offering the largest amount of available information; — taxa affiliated to Homo habilis on the one hand and archaĂŻc Homo sapiens on the other hand have been taken into account since the limits between the three taxa are not sharply cut. — a few fragmentary specimens, situated in the heart of numerous discussions taken from literature, have been added to the previously chosen specimens. A mixed coding of the states of characters is applied to the 35 specimens so defined. That is to say that some characters with multiple states are treated as ordinate and some others are treated non ordinate. The choice is based on ontogenetic considerations. The choice of the option

    XUV digital in-line holography using high-order harmonics

    Full text link
    A step towards a successful implementation of timeresolved digital in-line holography with extreme ultraviolet radiation is presented. Ultrashort XUV pulses are produced as high-order harmonics of a femtosecond laser and a Schwarzschild objective is used to focus harmonic radiation at 38 nm and to produce a strongly divergent reference beam for holographic recording. Experimental holograms of thin wires are recorded and the objects reconstructed. Descriptions of the simulation and reconstruction theory and algorithms are also given. Spatial resolution of few hundreds of nm is potentially achievable, and micrometer resolution range is demonstrated.Comment: 8 pages, 8 figure

    Role of computed tomography imaging for transcatheter valvular repair/insertion

    Get PDF
    During the last decade, the development of transcatheter based therapies has provided feasible therapeutic options for patients with symptomatic severe valvular heart disease who are deemed inoperable. The promising results of many nonrandomized series and recent landmark trials have increased the number of percutaneous transcatheter valve procedures in high operative risk patients. Pre-procedural imaging of the anatomy of the aortic or mitral valve and their spatial relationships is crucial to select the most appropriate device or prosthesis and to plan the percutaneous procedure. Multidetector row computed tomography provides 3-dimensional volumetric data sets allowing unlimited plane reconstructions and plays an important role in pre-procedural screening and procedural planning. This review will describe the evolving role of multidetector row computed tomography in patient selection and strategy planning of transcatheter aortic and mitral valve procedures

    Assessment of mitral bioprostheses using cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The orifice area of mitral bioprostheses provides important information regarding their hemodynamic performance. It is usually calculated by transthoracic echocardiography (TTE), however, accurate and reproducible determination may be challenging. Cardiovascular magnetic resonance (CMR) has been proven as an accurate alternative for assessing aortic bioprostheses. However, whether CMR can be similarly applied for bioprostheses in the mitral position, particularly in the presence of frequently coincident arrhythmias, is unclear. The aim of the study is to test the feasibility of CMR to evaluate the orifice area of mitral bioprostheses.</p> <p>Methods</p> <p>CMR planimetry was performed in 18 consecutive patients with mitral bioprostheses (n = 13 Hancock<sup>Ÿ</sup>, n = 4 Labcore<sup>Ÿ</sup>, n = 1 Perimount<sup>Ÿ</sup>; mean time since implantation 4.5 ± 3.9 years) in an imaging plane perpendicular to the transprosthetic flow using steady-state free-precession cine imaging under breath-hold conditions on a 1.5T MR system. CMR results were compared with pressure half-time derived orifice areas obtained by TTE.</p> <p>Results</p> <p>Six subjects were in sinus rhythm, 11 in atrial fibrillation, and 1 exhibited frequent ventricular extrasystoles. CMR image quality was rated as good in 10, moderate in 6, and significantly impaired in 2 subjects. In one prosthetic type (Perimount<sup>Ÿ</sup>), strong stent artifacts occurred. Orifice areas by CMR (mean 2.1 ± 0.3 cm<sup>2</sup>) and TTE (mean 2.1 ± 0.3 cm<sup>2</sup>) correlated significantly (r = 0.94; p < 0.001). Bland-Altman analysis showed a 95% confidence interval from -0.16 to 0.28 cm<sup>2 </sup>(mean difference 0.06 ± 0.11 cm<sup>2</sup>; range -0.1 to 0.3 cm<sup>2</sup>). Intra- and inter-observer variabilities of CMR planimetry were 4.5 ± 2.9% and 7.9 ± 5.2%.</p> <p>Conclusions</p> <p>The assessment of mitral bioprostheses using CMR is feasible even in those with arrhythmias, providing orifice areas with close agreement to echocardiography and low observer dependency. Larger samples with a greater variety of prosthetic types and more cases of prosthetic dysfunction are required to confirm these preliminary results.</p

    Cardiovascular magnetic resonance for the assessment of patients undergoing transcatheter aortic valve implantation: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Before trans-catheter aortic valve implantation (TAVI), assessment of cardiac function and accurate measurement of the aortic root are key to determine the correct size and type of the prosthesis. The aim of this study was to compare cardiovascular magnetic resonance (CMR) and trans-thoracic echocardiography (TTE) for the assessment of aortic valve measurements and left ventricular function in high-risk elderly patients submitted to TAVI.</p> <p>Methods</p> <p>Consecutive patients with severe aortic stenosis and contraindications for surgical aortic valve replacement were screened from April 2009 to January 2011 and imaged with TTE and CMR.</p> <p>Results</p> <p>Patients who underwent both TTE and CMR (n = 49) had a mean age of 80.8 ± 4.8 years and a mean logistic EuroSCORE of 14.9 ± 9.3%. There was a good correlation between TTE and CMR in terms of annulus size (R<sup>2 </sup>= 0.48, p < 0.001), left ventricular outflow tract (LVOT) diameter (R<sup>2 </sup>= 0.62, p < 0.001) and left ventricular ejection fraction (LVEF) (R<sup>2 </sup>= 0.47, p < 0.001) and a moderate correlation in terms of aortic valve area (AVA) (R<sup>2 </sup>= 0.24, p < 0.001). CMR generally tended to report larger values than TTE for all measurements. The Bland-Altman test indicated that the 95% limits of agreement between TTE and CMR ranged from -5.6 mm to + 1.0 mm for annulus size, from -0.45 mm to + 0.25 mm for LVOT, from -0.45 mm<sup>2 </sup>to + 0.25 mm<sup>2 </sup>for AVA and from -29.2% to 13.2% for LVEF.</p> <p>Conclusions</p> <p>In elderly patients candidates to TAVI, CMR represents a viable complement to transthoracic echocardiography.</p

    Approval of cancer drugs with uncertain therapeutic value: a comparison of regulatory decisions in Europe and the United States

    Get PDF
    Policy Points Regulatory agencies may have limited evidence on the clinical benefits and harms of new drugs when deciding whether new therapeutic agents are allowed to enter the market and under which conditions, including whether approval is granted under special regulatory pathways and obligations to address knowledge gaps through postmarketing studies are imposed. In a matched comparison of marketing applications for cancer drugs of uncertain therapeutic value reviewed by both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA), we found frequent discordance between the two agencies on regulatory outcomes and the use of special regulatory pathways. Both agencies often granted regular approval, even when the other agency judged there to be substantial uncertainty about drug benefits and risks that needed to be resolved through additional studies in the postmarketing period. Postmarketing studies imposed by regulators under special approval pathways to address remaining questions of efficacy and safety may not be suited to deliver timely, confirmatory evidence due to shortcomings in study design and delays, raising questions over the suitability of the FDA's Accelerated Approval and the EMA's Conditional Marketing Authorization as tools for allowing early market access for cancer drugs while maintaining rigorous regulatory standards. Context: Regulatory agencies are increasingly required to make market approval decisions for new drugs on the basis of limited clinical evidence, a situation commonly encountered in cancer. We aimed to investigate how regulators manage uncertainty in the benefit-risk profiles of new cancer drugs by comparing decisions for the world's two largest regulatory bodies—the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA)—over a 5-year period. Methods: We systematically identified a set of cancer drug-indication pairs for which data on efficacy and safety was less complete than that required for regular approval at time of market entry from 2009 to 2013, as determined by the FDA's use of Accelerated Approval (AA) or the EMA's use of Conditional Marketing Authorization (CMA) pathways, and matched these across the two agencies. Using publicly available information, we compared regulatory pathways and outcomes, final approved indications, and postmarketing obligations imposed by the agencies. Findings: We identified 21 cancer drug-indication pairs that received FDA AA, EMA CMA, or both. Although most applications relied on identical pivotal trials across the FDA and the EMA, regulatory pathways often differed; 57% of indications received either FDA AA or EMA CMA, and regular approval by the other agency. After approval, the EMA more often accepted single-arm studies to confirm clinical benefit compared to the FDA (75% vs. 29% of indications), and the FDA more commonly requested randomized controlled trials (85% vs. 50%). Forty-one percent of confirmatory trials after FDA AA were conducted in different populations than the approved indication, compared to 13% after EMA CMA. Both agencies relied primarily on surrogate measures of patient benefit for postmarketing obligations. After a median follow-up of 7.25 years, 40% of FDA and 61% of EMA postmarketing obligations after AA and CMA, respectively, were delayed. Conclusions: US and European regulators often deemed early and less complete evidence on benefit-risk profiles of cancer drugs sufficient to grant regular approval, raising questions over regulatory standards for the approval of new medicines. Even when imposing confirmatory studies in the postmarketing period through special approval pathways, meaningful evidence may not materialize due to shortcomings in study design and delays in conducting required studies with due diligence

    Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration

    Full text link
    [EN] We report the development of a table-top high peak power Titanium:Sapphire (Ti:Sa) CPA laser working at 100 Hz capable of delivering 205 mJ, 55 fs pulses. Every amplification stage is pumped by Nd-doped solid-state lasers and fully powered by diodes. Thermal effects in the Ti:Sa amplifiers are compensated passively with optics. This system is intended to be used for proton acceleration experiments at high repetition rates.Centro para el Desarrollo TecnolĂłgico Industrial (CDTI, Spain) within the INNPRONTA program, Grant no. IPT-20111027.Lera, R.; Bellido-MillĂĄn, PJ.; SĂĄnchez, I.; Mur, P.; Seimetz, M.; Benlloch Baviera, JM.; Roso, L.... (2019). Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration. Applied Physics B. 125(1):1-8. https://doi.org/10.1007/s00340-018-7113-8S181251P. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fajardo, D. Aubert, P. Balcou, F. Burgy, D. Douillet, S. Kazamias, G. de LachĂšze-Murel, T. Lefrou, S. le Pape, P. MercĂšre, H. Merdji, A.S. Morlens, J.P. Rousseau, C. Valentin, Nature 431(7007), 426–429 (2004)V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, A.E. Dangor, Science 298(5598), 1596–1600 (2002)H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Progress Phys. 75(5), 056401 (2012)A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751–793 (2013)T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267–270 (1979)M. Noaman-ul Haq, H. Ahmed, T. Sokollik, L. Yu, Z. Liu, X. Yuan, F. Yuan, M. Mirzaie, X. Ge, L. Chen, J. Zhang, Phys. Rev. Accel. Beams 20, 041301 (2017)D. Strickland, G. Mourou, Opt. Commun. 53(3), 219–221 (1985)G. Cheriaux, B. Walker, L.F. Dimauro, P. Rousseau, F. Salin, J.P. Chambaret, Opt. Lett. 21(6), 414–416 (1996)P. Tournois, Opt. Commun. 140(4), 245–249 (1997)R. Soulard, A. Brignon, S. Raby, E. Durand, R. MoncorgĂ©, Appl. Phys. B 106(2), 295–300 (2012)J. Liu, L. Ge, L. Feng, H. Jiang, H. Su, T. Zhou, J. Wang, Q. Gao, J. Li, Chin. Opt. Lett. 14(5), 051404 (2016)A. Maleki, M.K. Tehrani, H. Saghafifar, M.H.M. Dindarlu, H. Ebadian, Laser Phys. 26(2), 025003 (2016)R. Lera, F. Valle-Brozas, S. Torres-PeirĂł, A.R. de-la Cruz, M. GalĂĄn, P. Bellido, M. Seimetz, J.M. Benlloch, L. Roso, Appl. Opt. 55(33), 9573–9576 (2016)R. Lausten, P. Balling, J. Opt. Soc. Am. B 20(7), 1479–1485 (2003)I. Nam, M. Kim, T.H. Lee, S.W. Lee, H. Suk, Curr. Appl. Phys. 15(4), 468–472 (2015)E. Treacy, IEEE J. Quantum Electron. 5(9), 454–458 (1969)A. Trisorio, S. Grabielle, M. Divall, N. Forget, C.P. Hauri, Opt. Lett. 37(14), 2892–2894 (2012)Y.-H. Cha, Y.-W. Lee, S.M. Nam, J.M. Han, Y.J. Rhee, B.D. Yoo, B.C. Lee, Y.U. Jeong, Appl. Opt. 46(28), 6854–6858 (2007)P. Bellido, R. Lera, M. Seimetz, A.R. de la Cruz, S. Torres-PeirĂł, M. GalĂĄn, P. Mur, I. SĂĄnchez, R. Zaffino, L. Vidal, A. Soriano, S. SĂĄnchez, F. SĂĄnchez, M. RodrĂ­guez-Álvarez, J. Rigla, L. Moliner, A. Iborra, L. HernĂĄndez, D. Grau-Ruiz, A. GonzĂĄlez, J. GarcĂ­a-Garrigos, E. DĂ­az-Caballero, P. Conde, A. Aguilar, L. Roso, J. Benlloch, J. Instrum. 12(05), T05001 (2017

    Genetic and In Vitro Inhibition of PCSK9 and Calcific Aortic Valve Stenosis

    Get PDF
    The authors investigated whether PCSK9 inhibition could represent a therapeutic strategy in calcific aortic valve stenosis (CAVS). A meta-analysis of 10 studies was performed to determine the impact of the PCSK9 R46L variant on CAVS, and the authors found that CAVS was less prevalent in carriers of this variant (odds ratio: 0.80 [95% confidence interval: 0.70 to 0.91]; p = 0.0011) compared with noncarriers. PCSK9 expression was higher in the aortic valves of patients CAVS compared with control patients. In human valve interstitials cells submitted to a pro-osteogenic medium, PCSK9 levels increased and a PCSK9 neutralizing antibody significantly reduced calcium accumulation

    Nanofluid impingement jet heat transfer

    Get PDF
    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters
    • 

    corecore