1,496 research outputs found

    Coulomb blockade in two island systems with highly conductive junctions

    Full text link
    We report measurements on single-electron pumps, consisting of two metallic islands formed by three tunnel junctions in series. We focus on the linear-response conductance as a function of gate voltage and temperature of three samples with varying system parameters. In all cases, strong quantum fluctuation phenomena are observed by a log(k_B T/(2 E_co)) reduction of the maximal conductance, where E_co measures the coupling strength between the islands. The samples display a rich phenomenology, culminating in a non-monotonic behavior of the maximal conductance as a function of temperature

    Making space for art: a spatial perspective of disruptive and defensive institutional work in Venezuela’s art world

    Get PDF
    The physical and material aspects of space, such as geographical distance or boundaries, have social and symbolic consequences that impact how people influence and are influenced by institutions. Social actors can however contest how space is conceived, perceived and lived, thus making space a crucial lever in the disruption and defense of institutions. However, we lack understanding of the spatial aspects of such institutional struggles. In exploring how space is leveraged in institutional work, our study foregrounds the socio-political nature of space, building on and expanding the theorization of Lefebvre. We draw on an in depth longitudinal analysis of the material, social and symbolic aspects of the spatial dimensions of disruptive and defensive institutional work over the past twenty years in Venezuela’s art world. Following the Bolivarian Revolution in the late 1990s, the incoming government transformed the organization of the national cultural landscape, resulting in a prolonged period of institutional disruption and defense. We demonstrate that actors use the material, social, and symbolic dimensions of space to challenge and maintain their key values and practices, and that those three dimensions are intertwined

    HDR-based CRISPR/Cas9-mediated Knockout of PD-L1 in C57BL/6 Mice

    Full text link
    The immune-inhibitory molecule programmed cell death ligand 1 (PD-L1) has been shown to play a role in pathologies such as autoimmunity, infections, and cancer. The expression of PD-L1 not only on cancer cells but also on non-transformed host cells is known to be associated with cancer progression. Generation of PD-L1 deficiency in the murine system enables us to specifically study the role of PD-L1 in physiological processes and diseases. One of the most versatile and easy to use site-specific gene editing tools is the CRISPR/Cas9 system, which is based on an RNA-guided nuclease system. Similar to its predecessors, the Zinc finger nucleases or transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 catalyzes double-strand DNA breaks, which can result in frameshift mutations due to random nucleotide insertions or deletions via non-homologous end joining (NHEJ). Furthermore, although less frequently, CRISPR/Cas9 can lead to insertion of defined sequences due to homology-directed repair (HDR) in the presence of a suitable template. Here, we describe a protocol for the knockout of PD-L1 in the murine C57BL/6 background using CRISPR/Cas9. Targeting of exon 3 coupled with the insertion of a HindIII restriction site leads to a premature stop codon and a loss-of-function phenotype. We describe the targeting strategy as well as founder screening, genotyping, and phenotyping. In comparison to NHEJ-based strategy, the presented approach results in a defined stop codon with comparable efficiency and timelines as NHEJ, generates convenient founder screening and genotyping options, and can be swiftly adapted to other targets

    Bisphenol A in Thermal Paper Receipts: Taylor et al. Respond

    Get PDF
    We agree with Schwartz and Landrigan that there is a need for change in the regulatory system for chemicals used in products in the United States. Bisphenol A (BPA) is one of thousands of chemicals of concern, but it provides a striking example of what happens when there is no requirement for premarket testing

    Estradiol and Bisphenol A Stimulate Androgen Receptor and Estrogen Receptor Gene Expression in Fetal Mouse Prostate Mesenchyme Cells

    Get PDF
    doi:10.1289/ehp.9804Hormonal alterations during development have lifelong effects on the prostate gland. Endogenous estrogens, including 17ÎČ-estradiol (E2), and synthetic estrogenic endocrine disruptors, such as bisphenol A (BPA), have similar effects on prostate development. Increasing exposure to estrogens within the low-dose, physiologic range results in permanent increases in the size and androgen responsiveness of the prostate, whereas exposure within the high-dose, pharmacologic range has the opposite effects

    Materials Screening for Disorder-Controlled Chalcogenide Crystals for Phase-Change Memory Applications

    Get PDF
    Tailoring the degree of disorder in chalcogenide phase-change materials (PCMs) plays an essential role in nonvolatile memory devices and neuro-inspired computing. Upon rapid crystallization from the amorphous phase, the flagship Ge–Sb–Te PCMs form metastable rocksalt-like structures with an unconventionally high concentration of vacancies, which results in disordered crystals exhibiting Anderson-insulating transport behavior. Here, ab initio simulations and transport experiments are combined to extend these concepts to the parent compound of Ge–Sb–Te alloys, viz., binary Sb2Te3, in the metastable rocksalt-type modification. Then a systematic computational screening over a wide range of homologous, binary and ternary chalcogenides, elucidating the critical factors that affect the stability of the rocksalt structure is carried out. The findings vastly expand the family of disorder-controlled main-group chalcogenides toward many more compositions with a tunable bandgap size for demanding phase-change applications, as well as a varying strength of spin–orbit interaction for the exploration of potential topological Anderson insulators

    Large Effects from Small Exposures. I. Mechanisms for Endocrine-Disrupting Chemicals with Estrogenic Activity

    Get PDF
    Reproduced with permission from Environmental Health Perspectives. doi:10.1289/ehp.5494Information concerning the fundamental mechanisms of action of both natural and environmental hormones, combined with information concerning endogenous hormone concentrations, reveals how endocrine-disrupting chemicals with estrogenic activity (EEDCs) can be active at concentrations far below those currently being tested in toxicological studies. Using only very high doses in toxicological studies of EEDCs thus can dramatically underestimate bioactivity. Specifically: a) The hormonal action mechanisms and the physiology of delivery of EEDCs predict with accuracy the low-dose ranges of biological activity, which have been missed by traditional toxicological testing. b) Toxicology assumes that it is valid to extrapolate linearly from high doses over a very wide dose range to predict responses at doses within the physiological range of receptor occupancy for an EEDC; however, because receptor-mediated responses saturate, this assumption is invalid. c) Furthermore, receptor-mediated responses can first increase and then decrease as dose increases, contradicting the assumption that dose-response relationships are monotonic. d) Exogenous estrogens modulate a system that is physiologically active and thus is already above threshold, contradicting the traditional toxicological assumption of thresholds for endocrine responses to EEDCs. These four fundamental issues are problematic for risk assessment methods used by regulatory agencies, because they challenge the traditional use of extrapolation from high-dose testing to predict responses at the much lower environmentally relevant doses.Support during the preparation of this manuscript was provided by the W. Alton Jones Foundation to K.A.T, as well as by grants from the National Institutes of Health (NIH) (CA50354) and the University of Missouri (VMFC0018) to W.V.W and NIH (ES08293 and ES11283), U.S. Environmental Protection Agency (U914991), and University of Missouri Research Board to F.v.S
    • 

    corecore