67 research outputs found

    Field response of chickpea (Cicer arietinum L.) to high temperature

    Get PDF
    High temperature is an important factor affecting chickpea growth, development and grain yield. Understanding the plant response to high temperature is a key strategy in breeding for heat tolerance in chickpea (Cicer arietinum L.). This study assessed genetic variability for heat tolerance in chickpea and identified sources of heat tolerance that could be used for crop improvement. One hundred and sixty-seven genotypes were grown in two environments (heat stressed/late sown and non-stressed/optimal sowing time) in 2 years (2009–2010 and 2010–2011) at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India. Large genetic variation was observed for phenology, growth, yield components and grain yield. While phenology (assessed as days to first flower, days to 50% flowering and days to first pod) was negatively correlated with grain yield at high temperature; plant biomass, pod number, filled pod number and seed number per plant were positively correlated. Genotypes were classified into short and long duration groups based on their maturity. Days to first flowering (DFF) of long duration genotypes were negatively associated with grain yield under stressed conditions in both years compared with medium to short duration genotypes. However, genotypes varied in their heat sensitivity and temperatures ≄35 °C produced yield losses up to 39%. A heat tolerance index (HTI) classified the genotypes into five groups: (i) stable heat tolerant (>0.5), (ii) moderately heat tolerant (0.1–0.49), (iii) stable heat sensitive (−ve values), (iv) heat tolerant to moderately sensitive (−0.10 to 1) and (v) heat sensitive to moderately tolerant (−0.5 to 0.4). Pod characteristics, including days to first pod and pod number per plant, were correlated with grain yield whereas canopy temperature depression (CTD) was generally not correlated. Heat tolerant genotypes in a range of maturities were identified that could be used to improve the heat tolerance of chickpea

    High temperature tolerance in chickpea and its implications for plant improvement

    Get PDF
    Chickpea (Cicer arietinum L.) is an important food legume and heat stress affects chickpea ontogeny over a range of environments. Generally, chickpea adapts to high temperatures through an escape mechanism. However, heat stress during reproductive development can cause significant yield loss. The most important effects on the reproductive phase that affect pod set, seed set and yield are: (1) flowering time, (2) asynchrony of male and female floral organ development, and (3) impairment of male and female floral organs. While this review emphasises the importance of high temperatures >30°C, the temperature range of 32–35°C during flowering also produces distinct effects on grain yield. Recent field screening at ICRISAT have identified several heat-tolerant germplasm, which can be used in breeding programs for improving heat tolerance in chickpea. Research on the impact of heat stress in chickpea is not extensive. This review describes the status of chickpea production, the effects of high temperature on chickpea, and the opportunities for genetic improvement of chickpea tolerance to high temperatures

    High temperature tolerance in chickpea and its implications for plant improvement

    Get PDF
    Abstract. Chickpea (Cicer arietinum L.) is an important food legume and heat stress affects chickpea ontogeny over a range of environments. Generally, chickpea adapts to high temperatures through an escape mechanism. However, heat stress during reproductive development can cause significant yield loss. The most important effects on the reproductive phase that affect pod set, seed set and yield are: (1) flowering time, (2) asynchrony of male and female floral organ development, and (3) impairment of male and female floral organs. While this review emphasises the importance of high temperatures >308C, the temperature range of 32-358C during flowering also produces distinct effects on grain yield. Recent field screening at ICRISAT have identified several heat-tolerant germplasm, which can be used in breeding programs for improving heat tolerance in chickpea. Research on the impact of heat stress in chickpea is not extensive. This review describes the status of chickpea production, the effects of high temperature on chickpea, and the opportunities for genetic improvement of chickpea tolerance to high temperatures

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Effects of high temperature at different developmental stages on the yield of chickpea

    Get PDF
    High temperature during the reproductive stage is a major limitation to yield of chickpea (Cicer arietinum L.). Chickpea yield is sensitive to variability in temperature and rising temperature in spring and post-rainy season exposes chickpea to heat stress in Australia and India, respectively. The objective of this research was to screen chickpea germplasm for heat tolerance by analysing the mean maximum and minimum temperatures at different developmental stages (vegetative, flowering and grain filling). A total of 167 genotypes were grown under two contrasting environments viz., heat stress (late season) and non-heat stress (normal season) in field conditions during 2009-10 (Year 1) and 2010-11 (Year 2) at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India. Principal Component Analysis (PCA) demonstrated seasonal temperature differences (normal and late seasons) very effectively. Large genetic variation was found among the genotypes for their response to heat stress. The maximum temperature during grain filling period (GFMax) reduced the grain yield in chickpea. The inbred line ICCV 98902 had higher critical temperature (≄38˚C) during the grain filling period and produced reasonable grain yield under high temperature stress
    • 

    corecore