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Abstract 

Chickpea (Cicer arietinum L.) is an important food legume and heat stress 

affects chickpea ontogeny over a range of environments. Generally, chickpea adapts 

to high temperature through an escape mechanism. However, heat stress during 
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reproductive development can cause significant yield loss. The most important effects 

on the reproductive phase that affect pod set, seed set and yield are: (1) flowering time 

(2) asynchrony of male and female floral organ development and (3) impairment of 

male and female floral organs. While this review emphasizes the importance of high 

temperature > 30 ˚C, the temperature range of 32 - 35 ˚C during flowering also 

produces distinct effects on grain yield. Recent field screening at ICRISAT have 

identified several heat tolerant germplasm, which can be used in breeding programs 

for improving heat tolerance in chickpea. Research on the impact of heat stress in 

chickpea is not extensive. This review describes the status of chickpea production, the 

effects of high temperature on chickpea, and the opportunities for genetic 

improvement of chickpea tolerance to high temperature. 

Key words: Genetic variation, legumes, pollen, semi-arid tropics, tolerance 

1. Introduction 

Chickpea is a major grain legume used for food from ancient days. It is one of 

the essential semi-arid tropical (SAT) legume crop. Chickpea is either grown during the 

post-rainy season on stored soil moisture (South Asia and spring-sown Mediterranean) 

or as a Mediterranean winter crop on in-season rainfall; in both instances the crop is 

exposed to terminal drought which is accompanied by rising temperatures. The South 

Asian crop may also experience high temperatures in the seedling phase if planted early 

(Berger and Turner 2007). Chickpea productivity is constrained by several abiotic 

stresses (Singh et al. 1994; Gaur et al. 2007) and temperature is one of the most 

important determinants of crop growth over a range of environments (Summerfield et 

al. 1990) and may limit chickpea yield (Basu et al. 2009).   

The effects of heat stress during the vegetative and reproductive growth stages 

using agronomic, phenological, morphological and physiological assessment has been  
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studied in various crops such as wheat (Sharma et al. 2005), rice (Weerakoon et al. 

2008) and cotton (Cottee et al. 2010) whilst only limited research has been conducted in 

chickpea (Wang et al. 2006). The detrimental effects of high temperature on various 

growth and reproductive stages are difficult to assess when growing conditions are 

favourable in the short term (few days) as the plant continues vegetative growth but sets 

fewer pods because of indeterminate plant type and plasticity (Liu et al. 2003). The 

relatively narrow genetic base of chickpea is another reason why high temperature has 

such a detrimental effect on growth and reproductive physiology (Abbo et al. 2003a). 

For these reasons chickpea tends to be sensitive to high temperature during the growth 

and reproductive stages. In general, the cool season food legumes (peas, lentil, chickpea 

and faba bean) are more sensitive to heat than warm season legumes (cowpea, soybean, 

groundnut, pigeonpea, and mung bean). Among cool season legumes, chickpea is less 

sensitive to high temperature (Wery et al. 1993; McDonald and Paulsen 1997). 

Although chickpea is exposed to warm temperature (> 30 ºC) in certain regions, limited 

yield loss was found at 30 ºC which is higher than other cool season legumes such as 

field peas, faba bean and lentil (Summerfield et al. 1984; Erskine et al. 1994; 

McDonald and Paulsen 1997; Patrick and Stoddard 2010). Therefore a base level of 

heat tolerance is found in chickpea. However, there is no clear evidence to show the 

mechanism of heat tolerance. This review outlines the occurrence of high temperature 

stress, the state of chickpea production, the effects of high temperature on growth and 

physiology of chickpea, and explores strategies to improve chickpea breeding for heat 

tolerance. 

2. State of chickpea production 

Climates favourable for chickpea production fall into two general groupings; 

Mediterranean and summer dominant rainfall semi-arid subtropical climates (Berger 
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and Turner 2007). Chickpea production is also grouped into three regions globally: 

West Asia and North Africa (WANA), the Indian subcontinent region and recently 

emerged regions. The details of these regions, their climate and relative intensity of the 

principle stresses are discussed by Berger and Turner (2007). Chickpea is extensively 

cultivated in the Mediterranean climate regions of northern Pakistan, Iran, Iraq, Turkey, 

southern and south western Australia and the Mediterranean basin. In these areas, 

chickpea is widely sown in winter at a maximum air temperature of 10 ºC (Berger, 

2007) and high temperature occasionally occurs during reproductive development in the 

spring (Iliadis 1990).  

In the Indian subcontinent region and recently emerged regions (e.g. eastern, 

northern and southern Australia), the crop experiences cool (5 to10 ºC) and frosty 

nights (0 to -1 ºC) in the early vegetative stage and warm (20 to 27 ºC) to hot (> 30 ºC) 

air temperature during the day over the reproductive phase (Summerfield et al. 1984; 

Summerfield et al. 1990; Berger and Turner 2007). During the last two decades, south 

Indian and eastern Australian late-sown chickpea has been exposed to heat stress in the 

growing season, mainly in reproductive phase. In south India, if the rainy season 

(kharif) is extended, then the chickpea sowing in the rabi season will be delayed (Ali 

2004). This delay exposes the crop to high temperature during the reproductive stage. In 

Australia, particularly in northern NSW and depending on the climatic conditions, 

sowing can be delayed until last week of June to reduce the incidence of Ascochyta 

blight (Moore and Knights 2009). However, late sown crops may experience high 

temperatures during the reproductive phase. Berger and Turner (2007) and Berger et al. 

(2011) described the global chickpea distribution based on climate analysis and current 

production trends. The climate analysis showed that the current chickpea growing area 
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is under threat from increasing temperature and production may extend to cooler 

regions.  

3. The nature of heat stress and plant response 

High temperature often occurs in combination with high solar irradiance, 

drought, and strong wind, all of which can aggravate plant injury even in well watered 

plants (Hall 1992). Heat stress is a function of plant genotype, high temperature, water 

status and soil type. The occurrence and severity of heat stress varies in different 

regions from year to year. Depending on timing, duration and interaction, observed heat 

stress can be grouped into chronic and acute, each of which involve different coping 

mechanisms, adaptation strategies and ultimately, breeding techniques (Blum 1988; 

Wery et al. 1993). Chronic heat stress occurs at any stage of crop growth and generally 

results in substantial yield loss and even crop failure. Acute heat stress of relatively 

short duration can occur at any stage of crop growth, often leading to lower yield. Acute 

heat stress is more prevalent than chronic heat stress in the spring sown chickpea 

regions of WANA (e.g. Turkey) and the Indian subcontinent region. In the spring crop, 

the mean seed yield of 1627kg/ha decreased compared with the autumn crop due to 

seasonal temperature fluctuation (26 to 38 ˚C) during the reproductive stage (Ozdemir 

and Karadavut 2003). In north India, chickpea grain yield decreased by 53kg/ha in Uttar 

Pradesh and 301kg/ha in Haryana per 1 ºC increase in seasonal temperature (Kalra et al. 

2008). Pod development is clearly impaired at above optimum (> 30 ºC) temperatures 

(Summerfield et al. 1984). Nevertheless, different genotypes have a range of tolerance 

or resistance mechanisms that help them cope. 
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4. Genotypic variability for heat tolerance 

During the Greek and Roman period, chickpea was grown as a summer crop 

(sown in March/April and harvested in June/July) (Kumar and Abbo 2001). In the 

Mediterranean and near-eastern gene pools, the wild Cicer reticulatum germinates 

after autumn rain and the crop matures in spring. During the spring the crop is 

exposed to rising temperature which influences the flowering period, accelerates 

maturity and may limit yield. However, the shift of chickpea sowing from autumn to 

spring occurred early in the crop’s history (Abbo et al. 2003b) and was driven by high 

fungal disease (Ascochyta blight) incidence in the autumn sown crop (Kumar and 

Abbo 2001). This shift of season has likely caused a genetic bottleneck which 

narrowed the genetic diversity (Abbo et al. 2003a) and most probably genetic 

variation for heat tolerance. Therefore, the origin and diversity of genetic resources 

must be considered when screening germplasm for heat tolerance if the plant breeder 

is to improve the temperature tolerance of modern chickpea in the target 

environments. 

A decade ago, the heat tolerant genotypes ICCV 88512 and ICCV 88513 were 

identified from among 25 genotypes (Dua 2001). Recently, a reference collection of 

280 diverse chickpea germplasm was screened in the field for heat tolerance in two 

locations (Patancheru and Kanpur) in India during the post-rainy season (optimum) 

and summer season (late heat). Based on a Heat Tolerance Index (≥ 1.00), ICC 3362, 

ICC 6874 and ICC 12155 were identified as heat tolerant lines. ICC 16374, ICC 4567 

and ICC 10685 were classified as heat sensitive lines based on low HTI (negative 

values) (Krishnamurthy et al. 2011). Upadhyaya et al. (2011) identified ICC 14346 as 

a heat tolerant genotype among 35 early maturing germplasm under ideal crop 

management (irrigation, nitrogen application) conditions in field screening at 
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Patancheru based on yield (kg ha
-1

). At present, genotypic diversity of chickpea global 

germplasm collections and chickpea production environments, particularly those 

affected by high temperature have not been amply studied. The heat tolerance of 

chickpea is likely to be multi-genic and the components of heat tolerance are probably 

controlled by different sets of genes (Upadhyaya et al. 2011).  

5. Plant responses to heat 

5.1. Effect of heat stress on crop establishment (germination and crop development)  

Heat stress at sowing directly affects crop germination and crop establishment. 

Chickpea seed germination decreases at supra-optimum temperatures (Singh and 

Dhaliwal 1972; Ellis et al. 1986). Ellis et al. (1986) indicated that the optimal 

temperature for germination is 10 -15 ˚C and noted that high germination temperature 

are considered to be 22 - 35 ˚C. Covell et al. (1986) showed that germination was faster 

at higher temperatures between 31.8 and 33 ºC. However, at high temperature the 

mobilisation of cotyledon reserves and embryo growth are adversely affected. Whilst 

chickpea showed genotypic variation in the rate of germination under various 

temperatures (Ellis et al. 1986), the germination percentage of chickpea was zero when 

temperature ranged between 45 to 48 ºC (Singh and Dhaliwal 1972). High mean 

maximum temperature and low relative humidity can have a marked influence on 

seedlings (Saxena 1987). Low photosynthetic rates and high transpiration rates occur 

during high temperature stress and tend to reduce plant establishment in chickpea 

(Singh and Dhaliwal 1972). Recent climate data from field experiments in south India 

(Patancheru – 18 ˚N, 78 ˚E) during sowing time after the rainy season (last week of 

October) showed a temperature range of 28 - 31 ˚C (Upadhyaya et al. 2011). Sowing 
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temperature is an important determinant of yield, and will become a significant 

constraint should predicted climate change lead to higher future sowing temperatures. 

Though early phenology was mentioned in the heat escape mechanism section, 

the importance of early phenology in chickpea breeding for heat tolerance will be 

discussed in greater detail in this section. Higher temperature and photoperiod can 

modify plant phenology (e.g. opening of first flower), particularly if crops are exposed 

to warming temperatures and long days in summer (Summerfield et al. 1984; van der 

Maesen 1972). An understanding of these effects and their interactions with genotype 

are needed in field screening under stress. Breeders generally use days to first flowering 

as an indicator of crop duration (Anbessa et al. 2006). The photoperiod sensitive 

genotype (Chafa) produced flowers in 25 days under optimum temperature (26 ºC) and 

15 h photoperiod compared with 52 days in the late flowering genotypes (K 850, G 

130) (ICRISAT 1979). The flowering model studies of Summerfield et al. (1985) 

indicated that the rate of progress towards flowering was a linear function of mean 

temperature and there was no interaction between photoperiod and mean temperature. 

However, the linear development of the plant through to flowering only occurs within a 

defined range above which the rate of development declines. These critical 

temperatures vary among genotypes with tolerant lines having higher optimum 

temperature compared to sensitive genotypes. 

5.2. Effect of heat stress on reproductive development and yield 

  Chickpea has small flowers and the stamens are diadelphous (9+1 anthers). Self 

pollination takes place before the flower opens and pods form within five to six days 

(Singh 1997). Heat stress during the reproductive phase in legumes is generally allied 

with lack of pollination, abscission of flower buds, flowers and pods with substantial 
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yield loss (Nakano et al. 1997, 1998). Hot (> 30 ºC) and dry atmospheric conditions lead 

to profligate loss of flower buds and open flowers in chickpea (Sinha 1977).  

High temperature after flower opening decreases chickpea seed yield by reducing 

the number of seeds per plant and weight per seed (Wang et al. 2006). In chickpea, 

Summerfield et al. (1984) suggested that the longer the exposure during reproductive 

development to a high day temperature of 35 °C, the lower the yield. Most chickpea 

genotypes do not set pods when temperatures reach > 35 ºC (Basu et al. 2009). However, 

there is considerable variation among genotypes for response to high temperature. The 

period of anthesis and seed set are clearly critical stages for exposure to heat stress (Gross 

and Kigel 1994). Nayyar et al. (2005) suggested that the development of male (pollen, 

anthers) and female (stigma-style, ovary) parts are the most sensitive organs to abiotic 

stress in reproductive biology. Therefore pollen viability, stigma receptivity and ovule 

viability are useful indicators of sensitivity to abiotic stress (Nayyar et al. 2005). 

However, the effect of stress on either male or female organs depends upon the stage of 

sporogenesis (micro or mega). Due to heat stress, meiosis and pollen development are the 

most affected part in micro-sporogenesis. Megaspore formation in the ovule and 

fertilisation are the most important events in mega-sporogenesis under high temperature 

stress (Gross and Kigel 1994). 

High temperature effects on pre-anthesis are related to anther development, 

pollen sterility and pollen production. The study of pollen may help to predict genetic 

variation among genotypes for reproductive phase heat tolerance. Pollen sterility is 

one of the key factors limiting legume yield under high temperature (Porch and Jahn 

2001). Eight stages of chickpea pollen development, from pollen mother cell 

development to mature pollen can be distinguished (Fig. 1). Two of the stages, 

microspore mother cell meiosis and mature microspores at anthesis, appear to be 
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detrimentally affected by high temperature (Iwahori 1965; Ahmed et al. 1992). The 

microspore mother cell meiosis, particularly early meiosis І, ІІ is also sensitive to high 

temperature (Iwahori 1965). Ahmed et al. (1992) reported that tapetal cells (meiosis 

ІІ) did not become binucleate and the locular cavity was less developed in anthers 

under high temperatures (33 °C day/ 30 °C night) resulting in premature pollen 

development. Such information is lacking in chickpea at meiosis stage. Most of the 

pollen studies in chickpea have focused on cold tolerance (Srinivasan et al. 1999; 

Clarke et al. 2004) and the meiosis stage (9 days to 5-6 days before anthesis (DBA)) 

of chickpea was found to be sensitive to cold (< 3 º C) (Clarke and Siddique 2004). 

Insert Fig. 1 about here 

Reduced pollen viability is common in legumes during pre-anthesis. In 

chickpea, 80-90 % pollen germination occurs in the range 7-25 ºC (assessed after 4 h 

incubation in vitro). During germination pollen hydration is inhibited by low 

temperature (Clarke and Siddique 2004). In vitro pollen germination after 60 min 

incubation was higher (61 %) at 25 ºC in chickpea compared with 45 ºC (33 %) 

(Jaiwal and Mehta 1983). Therefore high temperature reduces pollen germination. 

Pollen abnormalities were observed in cowpea at 33/30 ºC when plants were exposed 

to heat 3 DBA (Ahmed et al. 1992). Anther indehiscence in bean occurred at 32/27 ºC 

when subjected to heat stress during the period 9 -13 DBA (Porch and Jahn 2001; 

Gross and Kigel 1994). Pollen production was reduced about 30-50 % at 38/30 ºC 

compared with 30/22 ºC in soybean (Koti et al. 2005). Therefore pre-anthesis flower 

abortion is caused by male sterility resulting from abnormal pollen development and 

anther indehiscence (Warrag and Hall 1984). In chickpea there is genotypic variability 

for high temperature sensitivity. At 35/20 ºC day/night exposure for 24 h before 
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anthesis, the chickpea genotype ICC 5912 became sterile, while pollen from the 

genotype ICCV 92944 was fertile (Devasirvatham et al. 2010) (Fig.2).  

Insert Fig. 2 about here 

High temperature effects post-anthesis are associated with loss of stigma 

receptivity (Kakani et al. 2002), poor pollen germination, pollen tube growth on the 

stigma (Talwar and Yanagihara 1999) and failure of pollen fertilisation and ovule 

formation (Ormrod et al. 1967). Heat stress sometimes has combined effect on male 

and female parts, thus creating asynchrony between male and female organs (Zinn et al. 

2010). There is a lack of information about asynchrony in chickpea under heat stress. 

Nevertheless, progress has been made in chickpea reproductive biology under cold 

stress. The stigma receptivity is reported to be low at low temperature (12/7 ºC) in 

chickpea (Nayyar et al. 2005). At 12/7 ºC, decline in pollen germination and pollen 

tube growth on the stigma may be associated with stigma receptivity (Clarke and 

Siddique 2004). This might occur due to low amounts of exudates on the stigma 

(Nayyar et al. 2005). Lack of pollen germination and tube growth in the style was found 

in the heat sensitive genotype ICC 5912 at 35/20 ºC due to sterile pollen 

(Devasirvatham et al. 2010).  In this study, stigma receptivity was not affected by high 

temperature stress. However, the observed reduction in pollen germination at high 

temperature on the stigma is not clear. Therefore it is essential that the effect of heat 

stress on pollen function (pollen germination and tube growth) and stigma receptivity of 

genotypes in the field be studied. 

Pre-anthesis heat stress resulted in flower abortion indicating that this stress 

limits pods formation. In addition, the number of days of exposure to high post-anthesis 

temperatures is important in legumes. The timing of pre- and post-anthesis heat stress 

was studied in cowpea (Hall 1992) and groundnut (Vara Prasad et al. 1998). A 
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combination of pre- and post-flowering stress reduced pod set in bean at 34/29 ºC 

(Agtunong et al. 1992). The maximum sensitivity to hot day temperatures (38 °C) in 

groundnut occurred anywhere between 6 days before to 15 days after flowering which 

can reduce the fruit set, i.e. the proportion of flowers producing pegs or pods (Vara 

Prasad et al. 1998; 1999). These examples indicate that the period of anthesis (pre-

anthesis; anthesis and post-anthesis) and number of days of exposure to heat during 

flowering play an essential role in the development of reproductive organs i.e. pods. 

Generally, the responses of plants to high temperature are assessed under high 

day temperature. However, high night temperature might also play a significant role 

in legumes and can influence seed set. Anthers failed to dehisce and pod development 

was affected by a high night temperature of 27 ºC in bean (Konsens et al. 1991). In 

cowpea, high night temperature (33/30 ºC) increased the occurrence of small and 

shrunken pollen leading to zero pod set compared with low night temperature (33/20 

ºC) (Ahmed et al. 1992). Therefore diurnal temperatures play an important role in 

legume male reproductive organs (Ahmed et al. 1992). However, little is known about 

these effects in chickpea.  

Seed development in legumes is a function of the rate and duration of embryo 

growth, which is in turn influenced by abiotic stress that may lead to embryo abortion 

(Warrag and Hall 1983), or small endosperms (Davies et al. 1999). Finally endosperm 

filling in the seed is affected by high temperature resulting in small or wrinkled seeds 

(Egli et al. 2005). The probable reason for small endosperm or smaller seed size after 

post-anthesis heat stress is that the remobilisation of photosynthates to the grain is 

reduced. A large proportion of carbohydrate is generally utilised to fill the grain in 

legumes (Davies et al. 1999), thus influencing seed weight and number. Under heat 

stress seeds are not fully develop in sensitive genotypes at agronomic maturity 
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(Sivakumar and Singh 1987). More research is needed to address the remobilisation of 

the photosynthates to chickpea seeds under heat stress. 

Seed quality (uniformity of seed size, shape, colour and texture of the seed coat) 

is important for grain marketing and is subjected to genotypic x environmental (G x E) 

effects that seem to be related to abiotic stress, particularly in kabuli chickpea 

(Sivakumar and Singh 1987; Leport et al. 1999). Whilst heat stress is expected to play a 

role here, its effects have not been well studied. 

In summary, available evidence indicates that chickpea crop establishment 

(seedling growth) has a lower supra-optimal temperature (20 to 24 ˚C) than pollen 

germination or pollen tube growth (25 ˚C) (Table 1). However, high temperature 

frequently occurs during the reproductive stage in chickpea production areas. Heat 

stress has important effects on the reproductive period that influence time to pod set, 

seed set and yield including: (1) flowering time (2) asynchrony of male and female 

organ development and (3) impairment of male and female organs (Craufurd and 

Wheeler 2009; Zinn et al. 2010). Therefore, improved understanding of chickpea 

response to heat stress (both day and night temperatures) combined with the timing and 

duration (short or acute/ long or chronic) of heat stress is important for chickpea 

breeding.    

Insert Table 1 about here 

4.3. Effect of heat stress on physiology 

  Photosynthetic rate and chlorophyll content are important physiological 

parameters in plants. Heat stress directly affects photosynthesis including 

photosystem ІІ (PS ІІ) in chickpea (Srinivasan et al. 1996). The rate of photosynthesis 

has a negative linear relationship with temperature (Grace 1988). Peak photosynthetic 

rate was observed at sub-optimal temperatures (22 ºC) in chickpea under controlled 
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environments (Singh et al. 1982). At Hissar in north India, the net photosynthetic rate 

at 25 ˚C was linearly related to photon flux density and reduced at ≥ 28 ˚C (Singh et 

al. 1987). Singh et al. (1987) also reported that transpiration efficiency 

(photosynthesis/ transpiration) of chickpea decreases with increasing temperature. 

Photosynthetic rates are higher during 50 % flowering to pod formation than the 

vegetative stage in chickpea. Photosynthetic duration is controlled by the requirement 

of assimilates in the growing organs (e.g. leaves) and the reproductive organs (e.g. 

pods) (Singh et al. 1987) and also by the environment.  

Membrane stability of leaf tissue can be used as another physiological 

indicator of heat stress, and is determined by electrolyte leakage measured as 

electrical conductivity (Stoddard, et al. 2006). Genotypic variation for heat tolerance 

in chickpea was evaluated during vegetative, flowering and pod filling stages by 

testing cell membrane thermostability (using electrolyte leakage). The chickpea lines 

Annigeri, ILC 482 and ICCV 10 were more thermostable at 45 ºC than K 850 and 

injury decreased with crop development (Srinivasan et al. 1996). However, there is no 

evidence of a relationship between cellular integrity under heat stress and grain yield. 

Tongden et al. (2006) used cell membrane stability as a screening technique at the 

seedling stage of chickpea to identify heat tolerant and sensitive cultivars.  

The plant is unlikely to show any significant yield difference due to short 

duration (acute) heat stress and distinguishing genotypes may be difficult. Under such 

situations, testing membrane stability and photosynthesis may be more suitable 

screening techniques if they can be linked with injury to tissue or physiological 

process. 

The rate of assimilate partitioning and leaf senescence are important 

physiological responses that influence pod set and yield. Carbohydrates (accumulated at 
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the time of photosynthesis) supplied to the reproductive organs (e.g. flowers and pods) 

directly influence grain filling (Hendrix 2001). The rapid growth and development of 

reproductive organs arises through partitioning of a large proportion of the net 

accumulated biomass from leaves under heat stress (Evans 1993). ). However, there are 

limited physiological studies on chickpea heat tolerance and the interaction between 

germplasm and environments. 

In general, the success of heat screening physiological techniques depends on 

the frequency of heat stress in the field and the relevance of managed screening 

techniques to the target environment (Wery et al. 1994). Limited screening techniques 

have been developed for heat tolerance in chickpea (Singh et al. 1994) because 

significant G x E interaction and differences in phenology make screening difficult 

(Wery et al. 1994). Hence, the improvement of heat tolerance in chickpea is dependent 

upon access to reliable and accurate phenotyping procedures.  

5. Effect of heat stress on nitrogen fixation 

High temperatures affect nitrogen fixation and symbiosis in chickpea 

(Rodrigues et al. 2006). Generally, high temperature reduces nodule formation, 

impairs nodule function and affects nodule structure (Roughley and Dart 1970; 

Kurdali 1996). Detrimental effect on nodule formation and nitrogen fixation 

efficiency of chickpea was observed in continuous warm days of 30/18 ºC day/ night 

temperatures (Minchin et al. 1980). Slightly increased day temperature (32.5 ºC) 

delayed nodulation, decreased total plant nitrogen fixation and longevity of the 

symbiotically active nodule population (Rawsthorne et al. 1985). Nodules were not 

formed at > 32 ºC soil temperature and recovery of nitrogenase activity failed after 

plant roots were exposed to 35 ºC. The optimum soil temperatures for chickpea 

growth lie between 18 and 22 ºC for nodulation and nitrogen fixation (Dart et al. 
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1975). When the chickpea cultivar ILC 482 was inoculated with Rhizobium 

leguminosarum L., strain CP 37A, the initial growth rate was encouraged at 40/25 ºC 

under controlled conditions (Laurie and Stewart 1993). However, the effect of heat 

stress during nitrogen fixation could vary in different genotypes (Summerfield et al. 

1981). Thus, further investigation of heat stress and rhizobium culture in chickpea is 

needed. 

Most nitrogen fixation in chickpea occurs during the vegetative phase 

(biomass accumulation) and declines after pod filling. Most of the spring-sown 

chickpea is exposed to warm temperature during flowering. But in south Asia (north, 

central and south India), the vegetative phase is subjected to high maximum 

temperature of 31 to 33 ˚C (Berger et al. 2011). From the available data, it is clear that 

temperature > 30 ˚C has detrimental effect on nitrogen fixation. Therefore, particular 

consideration is needed in these regions.           

The heritability of nitrogen fixation traits, under heat stress may be important to 

obtaining higher, more sustainable yields in hot environments. However, most research 

of this nature has focussed on water stress and very little has been published on heat 

stress. There is a need for greater knowledge of plant physiological response to nitrogen 

fixation by different rhizobial strains under heat stress.  

6. Adaptation mechanism 

Chickpea performance over different environments under high temperature has 

been covered in the previous sections. The adaptive strategies to high temperature stress 

are classified into the following three groups (Wery et al. 1993):   
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6.1. Adaptation mechanisms of crop plants to high temperatures 

i. Heat escape: Plants can escape heat stress with early phenology. Though flower 

initiation is sensitive to rising temperature in chickpea (Toker and Canci 2006), early 

flowering and maturity is a heat escape mechanism (Toker et al. 2007) particularly in 

the Mediterranean spring-sown environments and south Indian germplasm (Berger et 

al. 2011). 

ii. Heat avoidance: Leaf reflectance, reduction of non-photosynthetic energy intercepted 

by the canopy and transpiration are important physiological components of heat 

avoidance. Leaves play a vital role in heat avoidance by changing their orientation, 

transpiration rate and reflectance (Wery et al. 1993). The mechanism of heat avoidance 

has not been studied in chickpea and screening germplasm for heat avoidance may lead 

to improve productivity in heat stressed environments. 

iii. Heat tolerance: Heat tolerance is linked to membrane stability, alteration of 

membrane lipid composition, accumulation of heat shock proteins and specific solutes 

(proline and glycine) particularly in pollen (Blum 1988). The role of protein functional 

properties (e.g. heat shock proteins) has not been studied in chickpea and their 

assessment may assist plant breeders in the development of heat tolerant cultivars. 

7. Strategies to improve breeding for heat tolerance in chickpea 

Visual selection, selection for physiological traits linked to plant response to 

high temperature, empirical selection for yield and marker assisted selection (MAS) 

are four important selection methods used to improve heat tolerance through breeding 

(Howarth 2005). However, the first step in the breeding process is identification of 

genetic diversity for economically important traits. Genetic diversity can be measured 

by quantifying variation in morphological characters that are targeted for selection for 

adaptation to heat stress. This approach has been used in south India (Krishnamurthy 
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et al. 2011; Upadhaya et al. 2011). Genetic diversity is also assessed using an eco-

geographic approach to select chickpea germplasm for crossing (Berger 2007). In 

addition, new DNA based fingerprinting technologies can be used to quantify the 

extent of diversity among potential parental lines (Lin et al. 2008).  

The next step in the breeding process is selection of superior heat tolerant 

germplasm from the progeny of each cross. A suitable screening environment is 

essential. Some breeders use late planting to induce high levels of heat stress from 

anthesis through the grain filling period (Krishnamurthy et al. 2011). Others use more 

sophisticated techniques such as field based heat chambers or controlled environment 

chambers (Cottee et al. 2010). The primary consideration when choosing a screening 

method is relevance to the target environment.  If quantitative trait loci (QTL) linked 

to superior heat tolerance has been identified then molecular markers associated with 

these QTL can be used at any time during the selection process to conserve these 

chromosomal regions in the progeny. While molecular markers for heat tolerance 

have been identified in rice (Ying-hui et al. 2011) and wheat (Al-Doss et al. 2010), 

there are currently no effective markers available in chickpea. Nevertheless, 

contrasting parents of chickpea for heat tolerance were crossed and used to develop 

recombinant inbred lines (Krishnamurthy et al. 2011) which will later be assessed for 

heat tolerance and QTL mapping. 

8. Conclusions and presumption for the future 

Although classification of heat responses of chickpea has been documented 

(Krishnamurthy et al. 2011; Upadhaya et al. 2011), there has been little attempt to 

extrapolate these findings across the world’s chickpea production areas. The 

determination of a heat response phenotype through screening is vital if the genetic 

control of heat tolerance in chickpea is to be understood and significant progress made 
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through plant breeding. Clearly, the research under high temperature stress shows that 

early phenology is the most important mechanism and pod set the primary yield 

component to be considered in heat tolerance breeding. Overall, the heat stress can be 

studied using a holistic approach that integrates genetic and physiological 

characterisation of plant response to help define plant breeding targets. These combined 

approaches which include molecular tools and agronomic practices, will be pivotal to 

developing improved heat tolerant chickpea cultivars. However research gaps include: 

• Development of simple screening methods to identify heat tolerance in chickpea 

genotypes relevant to the target environment 

• Determination of the physiological response of chickpea to heat stress across a 

range of concurrent factors such as moisture availability and evaporative demand and 

the underlying genetic control of these traits 

• Classification of genetic material to determine diversity groupings and 

establishment of genetic correlations between the traits linked to heat stress response 

• Identification of molecular markers  linked to  major QTLs that explain a 

significant portion of the variation in  heat tolerance 
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Table 1. Summary of findings on the effect of high temperature on germination, 

growth and development and flowering of chickpea  

Crop stage 

 

Optimum 

temperature 

Detrimental 

high 

temperature 

References 

Germination 

Soil temperature 

Air temperature 

 

15 to 34 ºC 

31.8 to 33 ºC 

 

≥ 35 ºC 

≥ 35 ºC 

 

Singh and Dhaliwal (1972); 

Covell et al. (1986) 

Growth and development 

Seedling growth 

 

Leaf growth 

 

Early growth 

20 to 24 ºC 

 

10 to 25 ºC 

 

20 to 26 ºC 

≥ 28 ºC 

 

≥ 27 ºC 

 

≥ 27 ºC 

Sivaprasad and Sundrasarma, 

(1987) 

Khanna-Chopra and Sinha 

(1987) 

Van derMaesen (1972) 

Flowering    

In vitro Pollen 

germination 

In vitro Pollen tube 

growth 

Flowering and pod 

development 

25 ºC 

 

25 ºC 

 

20 to 26 ºC 

 

35 ºC 

 

45 ºC 

 

≥ 30 ºC 

 

Jaiwal and Mehta (1983) 

 

Jaiwal and Mehta (1983) 

 

Summerfield et al. (1980) 
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Fig. 2 Fertile and sterile pollen of chickpea at 35/20 ºC (pollen grains stained 

with 2% acetocarmine) (a) Fertile pollen of ICCV 92944 (picked up stain); (b) 

Sterile pollen of ICC 5912 (no stain) (Devasirvatham et al. 2010) (Bars = 10 µm) 
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