49 research outputs found

    The role of receptor MAS in microglia-driven retinal vascular development

    Get PDF
    Objective: The receptor MAS, encoded by Mas1, is expressed in microglia and its activation has been linked to anti-inflammatory actions. However, microglia are involved in several different processes in the central nervous system, including the promotion of angiogenesis. We therefore hypothesized that the receptor MAS also plays a role in angiogenesis via microglia. Approach and results: To assess the role of MAS on vascular network development, flat-mounted retinas from 3-day-old wild-type (WT) and Mas1−/− mice were subjected to Isolectin B4 staining. The progression of the vascular front was reduced (− 24%, p < 0.0001) and vascular density decreased (− 38%, p < 0.001) in Mas1−/− compared to WT mice with no change in the junction density. The number of filopodia and filopodia bursts were decreased in Mas1−/− mice at the vascular front (− 21%, p < 0.05; − 29%, p < 0.0001, respectively). This was associated with a decreased number of vascular loops and decreased microglial density at the vascular front in Mas1−/− mice (-32%, p < 0.001; − 26%, p < 0.05, respectively). As the front of the developing vasculature is characterized by reduced oxygen levels, we determined the expression of Mas1 following hypoxia in primary microglia from 3-day-old WT mice. Hypoxia induced a 14-fold increase of Mas1 mRNA expression (p < 0.01). Moreover, stimulation of primary microglia with a MAS agonist induced expression of Notch1 (+ 57%, p < 0.05), Dll4 (+ 220%, p  < 0.001) and Jag1 (+ 137%, p < 0.001), genes previously described to mediate microglia/endothelial cell interaction during angiogenesis. Conclusions: Our study demonstrates that the activation of MAS is important for microglia recruitment and vascular growth in the developing retina

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range

    Mechanisms of progression of chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) occurs in all age groups, including children. Regardless of the underlying cause, CKD is characterized by progressive scarring that ultimately affects all structures of the kidney. The relentless progression of CKD is postulated to result from a self-perpetuating vicious cycle of fibrosis activated after initial injury. We will review possible mechanisms of progressive renal damage, including systemic and glomerular hypertension, various cytokines and growth factors, with special emphasis on the renin–angiotensin–aldosterone system (RAAS), podocyte loss, dyslipidemia and proteinuria. We will also discuss possible specific mechanisms of tubulointerstitial fibrosis that are not dependent on glomerulosclerosis, and possible underlying predispositions for CKD, such as genetic factors and low nephron number

    Angiotensin AT(2) Receptor Stimulation Alleviates Collagen-Induced Arthritis by Upregulation of Regulatory T Cell Numbers

    No full text
    The angiotensin AT(2) receptor (AT(2)R) is a main receptor of the protective arm of the renin-angiotensin system and exerts for instance anti-inflammatory effects. The impact of AT(2)R stimulation on autoimmune diseases such as rheumatoid arthritis (RA) is not yet known. We investigated the therapeutic potential of AT(2)R-stimulation with the selective non-peptide AT(2)R agonist Compound 21 (C21) in collagen-induced arthritis (CIA), an animal model for inflammatory arthritis. Arthritis was induced by immunization of DBA/1J mice with collagen type II (CII). Prophylactic and therapeutic C21 treatment alleviates arthritis severity and incidence in CIA. Joint histology revealed significantly less infiltrates of IL-1 beta and IL-17A expressing cells and a well-preserved articular cartilage in C21- treated mice. In CIA, the number of CD4(+)CD25(+)FoxP3(+) regulatory T (Treg) cells significantly increased upon C21 treatment compared to vehicle. T cell differentiation experiments demonstrated increased expression of FoxP3 mRNA, whereas IL-17A, STAT3 and IFN-gamma mRNA expression were reduced upon C21 treatment. In accordance with the mRNA data, C21 upregulated the percentage of CD4(+)FoxP3(+) cells in Treg polarizing cultures compared to medium-treated controls, whereas the percentage of CD4(+)IL-17A(+) and CD4(+)IFN-gamma(+) T cells was suppressed. To conclude, C21 exerts beneficial effects on T cell-mediated experimental arthritis. We found that C21-induced AT(2)R-stimulation promotes the expansion of CD4(+) regulatory T cells and suppresses IL-17A production. Thus, AT(2)R-stimulation may represent an attractive treatment strategy for arthritis

    Angiotensin AT(2) Receptor Stimulation Alleviates Collagen-Induced Arthritis by Upregulation of Regulatory T Cell Numbers

    No full text
    The angiotensin AT(2) receptor (AT(2)R) is a main receptor of the protective arm of the renin-angiotensin system and exerts for instance anti-inflammatory effects. The impact of AT(2)R stimulation on autoimmune diseases such as rheumatoid arthritis (RA) is not yet known. We investigated the therapeutic potential of AT(2)R-stimulation with the selective non-peptide AT(2)R agonist Compound 21 (C21) in collagen-induced arthritis (CIA), an animal model for inflammatory arthritis. Arthritis was induced by immunization of DBA/1J mice with collagen type II (CII). Prophylactic and therapeutic C21 treatment alleviates arthritis severity and incidence in CIA. Joint histology revealed significantly less infiltrates of IL-1 beta and IL-17A expressing cells and a well-preserved articular cartilage in C21- treated mice. In CIA, the number of CD4(+)CD25(+)FoxP3(+) regulatory T (Treg) cells significantly increased upon C21 treatment compared to vehicle. T cell differentiation experiments demonstrated increased expression of FoxP3 mRNA, whereas IL-17A, STAT3 and IFN-gamma mRNA expression were reduced upon C21 treatment. In accordance with the mRNA data, C21 upregulated the percentage of CD4(+)FoxP3(+) cells in Treg polarizing cultures compared to medium-treated controls, whereas the percentage of CD4(+)IL-17A(+) and CD4(+)IFN-gamma(+) T cells was suppressed. To conclude, C21 exerts beneficial effects on T cell-mediated experimental arthritis. We found that C21-induced AT(2)R-stimulation promotes the expansion of CD4(+) regulatory T cells and suppresses IL-17A production. Thus, AT(2)R-stimulation may represent an attractive treatment strategy for arthritis

    Direct angiotensin type 2 receptor (AT2R) stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice.

    No full text
    In the present study, we evaluated stimulation of the angiotensin type 2 receptor (AT2R) by the selective non-peptide agonist Compound 21 (C21) as a novel therapeutic concept for the treatment of multiple sclerosis using the model of experimental autoimmune encephalomyelitis (EAE) in mice. C57BL-6 mice were immunized with myelin-oligodendrocyte peptide and treated for 4 weeks with C21 (0.3 mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction in EAE-induced demyelinated areas in lumbar spinal cord tissue after AT2R stimulation. C21-treated mice had a significantly better neurological score than vehicle-treated controls. In aggregating brain cell cultures challenged with lipopolysaccharide (LPS) plus interferon-γ (IFNγ), AT2R stimulation prevented demyelination, accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and nitric oxide production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R stimulation protects the myelin sheaths in autoimmune central nervous system inflammation by inhibiting the T-cell response and microglia activation. Our findings identify the AT2R as a potential new pharmacological target for demyelinating diseases such as multiple sclerosis
    corecore