116 research outputs found

    Iterated Moire Maps and Braiding of Chiral Polymer Crystals

    Full text link
    In the hexagonal columnar phase of chiral polymers a bias towards cholesteric twist competes with braiding along an average direction. When the chirality is strong, screw dislocations proliferate, leading to either a tilt grain boundary phase or a new "moire state" with twisted bond order. Polymer trajectories in the plane perpendicular to their average direction are described by iterated moire maps of remarkable complexity.Comment: 10 pages (plain tex) 3 figures uufiled and appende

    X-Ray-Diffraction Study of Charge-Density-Waves and Oxygen-Ordering in YBa2Cu3O6+x Superconductor

    Full text link
    We report a temperature-dependent increase below 300 K of diffuse superlattice peaks corresponding to q_0 =(~2/5,0,0) in an under-doped YBa_2Cu_3O_6+x superconductor (x~0.63). These peaks reveal strong c-axis correlations involving the CuO_2 bilayers, show a non-uniform increase below \~220 K with a plateau for ~100-160 K, and appear to saturate in the superconducting phase. We interpret this unconventional T-dependence of the ``oxygen-ordering'' peaks as a manifestation of a charge density wave in the CuO_2 planes coupled to the oxygen-vacancy ordering.Comment: 4 pages, 4 figure

    Time-resolved single-crystal X-ray crystallography

    Get PDF
    In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p

    Optimization for maximum production of truck/shovel mining system

    No full text
    2 volsAvailable from British Library Document Supply Centre- DSC:D80740 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Protein energy landscapes determined by five-dimensional crystallography

    No full text
    Free energy landscapes decisively determine the progress of enzymatically catalyzed reactions1. Timeresolved macromolecular crystallography unifies transient-state kinetics with structure determination2-4 because both can be determined from the same set of X-ray data. We demonstrate here how barriers of activation can be determined solely from five-dimensional crystallography5. Directly linking molecular structures with barriers of activation between them allows for gaining insight into the structural nature of the barrier. We analyze comprehensive time series of crystallographic data at 14 different temperature settings and determine entropy and enthalpy contributions to the barriers of activation. 100 years after the discovery of X-ray scattering, we advance X-ray structure determination to a new frontier,the determination of energy landscapes.118211sciescopu
    • …
    corecore