7 research outputs found

    Development and characterization of phytosterol-enriched oil microcapsules for foodstuff application

    Get PDF
    Phytosterols are lipophilic compounds contained in plants and have several biological activities. The use of phytosterols in food fortification is hampered due to their high melting temperature, chalky taste, and low solubility in an aqueous system. Also, phytosterols are easily oxidized and are poorly absorbed by the human body. Formulation engineering coupled with microencapsulation could be used to overcome these problems. The aim of this study was to investigate the feasibility of encapsulating soybean oil enriched with phytosterols by spray-drying using ternary mixtures of health-promoting ingredients, whey protein isolate (WPI), inulin, and chitosan as carrier agents. The effect of different formulations and spray-drying conditions on the microencapsules properties, encapsulation efficiency, surface oil content, and oxidation stability were studied. It was found that spherical WPI-inulin-chitosan phytosterol-enriched soybean oil microcapsules with an average size below 50 μm could be produced with good encapsulation efficiency (85%), acceptable level of surface oil (11%), and water activity (0.2–0.4) that meet industrial requirements. However, the microcapsules showed very low oxidation stability with peroxide values reaching 101.7 meq O2/kg of oil just after production, and further investigations and optimization are required before any industrial application of this encapsulated system

    Hepatitis C virus prevalence and level of intervention required to achieve the WHO targets for elimination in the European Union by 2030: a modelling study

    No full text
    Abstract BACKGROUND: Hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide. In the European Union (EU), treatment and cure of HCV with direct-acting antiviral therapies began in 2014. WHO targets are to achieve a 65% reduction in liver-related deaths, a 90% reduction of new viral hepatitis infections, and 90% of patients with viral hepatitis infections being diagnosed by 2030. This study assessed the prevalence of HCV in the EU and the level of intervention required to achieve WHO targets for HCV elimination. METHODS: We populated country Markov models for the 28 EU countries through a literature search of PubMed and Embase between Jan 1, 2000, and March 31, 2016, and a Delphi process to gain expert consensus and validate inputs. We aggregated country models to create a regional EU model. We used the EU model to forecast HCV disease progression (considering the effect of immigration) and developed a strategy to acehive WHO targets. We used weighted average sustained viral response rates and fibrosis restrictions to model the effect of current therapeutic guidelines. We used the EU model to forecast HCV disease progression (considering the effect of immigration) under current screening and therapeutic guidelines. Additionally, we back-calculated the total number of patients needing to be screened and treated to achieve WHO targets. FINDINGS: We estimated the number of viraemic HCV infections in 2015 to be 3 238 000 (95% uncertainty interval [UI] 2 106 000-3 795 000) of a total population of 509 868 000 in the EU, equating to a prevalence of viraemic HCV of 0·64% (95% UI 0·41-0·74). We estimated that 1 180 000 (95% UI 1 003 000-1 357 000) people were diagnosed with viraemia (36·4%), 150 000 (12 000-180 000) were treated (4·6% of the total infected population or 12·7% of the diagnosed population), 133 000 (106 000-160 000) were cured (4·1%), and 57 900 (43 900-67 300) were newly infected (1·8%) in 2015. Additionally, 30 400 (26 600-42 500) HCV-positive immigrants entered the EU. To achieve WHO targets, unrestricted treatment needs to increase from 150 000 patients in 2015 to 187 000 patients in 2025 and diagnosis needs to increase from 88 800 new cases annually in 2015 to 180 000 in 2025. INTERPRETATION: Given its advanced health-care infrastructure, the EU is uniquely poised to eliminate HCV; however, expansion of screening programmes is essential to increase treatment to achieve the WHO targets. A united effort, grounded in sound epidemiological evidence, will also be necessary

    Hepatitis C virus prevalence and level of intervention required to achieve the WHO targets for elimination in the European Union by 2030: a modelling study

    No full text
    Background Hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide. In the European Union (EU), treatment and cure of HCV with direct-acting antiviral therapies began in 2014. WHO targets are to achieve a 65% reduction in liver-related deaths, a 90% reduction of new viral hepatitis infections, and 90% of patients with viral hepatitis infections being diagnosed by 2030. This study assessed the prevalence of HCV in the EU and the level of intervention required to achieve WHO targets for HCV elimination. Methods We populated country Markov models for the 28 EU countries through a literature search of PubMed and Embase between Jan 1, 2000, and March 31, 2016, and a Delphi process to gain expert consensus and validate inputs. We aggregated country models to create a regional EU model. We used the EU model to forecast HCV disease progression (considering the effect of immigration) and developed a strategy to acehive WHO targets. We used weighted average sustained viral response rates and fibrosis restrictions to model the effect of current therapeutic guidelines. We used the EU model to forecast HCV disease progression (considering the effect of immigration) under current screening and therapeutic guidelines. Additionally, we back-calculated the total number of patients needing to be screened and treated to achieve WHO targets. Findings We estimated the number of viraemic HCV infections in 2015 to be 3 238 000 (95% uncertainty interval [UI] 2 106 000–3 795 000) of a total population of 509 868 000 in the EU, equating to a prevalence of viraemic HCV of 0·64% (95% UI 0·41–0·74). We estimated that 1 180 000 (95% UI 1 003 000–1 357 000) people were diagnosed with viraemia (36·4%), 150 000 (12 000–180 000) were treated (4·6% of the total infected population or 12·7% of the diagnosed population), 133 000 (106 000–160 000) were cured (4·1%), and 57 900 (43 900–67 300) were newly infected (1·8%) in 2015. Additionally, 30 400 (26 600–42 500) HCV-positive immigrants entered the EU. To achieve WHO targets, unrestricted treatment needs to increase from 150 000 patients in 2015 to 187 000 patients in 2025 and diagnosis needs to increase from 88 800 new cases annually in 2015 to 180 000 in 2025. Interpretation Given its advanced health-care infrastructure, the EU is uniquely poised to eliminate HCV; however, expansion of screening programmes is essential to increase treatment to achieve the WHO targets. A united effort, grounded in sound epidemiological evidence, will also be necessary. Funding Gilead Sciences. © 2017 Elsevier Lt

    Hepatitis C virus prevalence and level of intervention required to achieve the WHO targets for elimination in the European Union by 2030: a modelling study

    No full text
    Abstract BACKGROUND: Hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide. In the European Union (EU), treatment and cure of HCV with direct-acting antiviral therapies began in 2014. WHO targets are to achieve a 65% reduction in liver-related deaths, a 90% reduction of new viral hepatitis infections, and 90% of patients with viral hepatitis infections being diagnosed by 2030. This study assessed the prevalence of HCV in the EU and the level of intervention required to achieve WHO targets for HCV elimination. METHODS: We populated country Markov models for the 28 EU countries through a literature search of PubMed and Embase between Jan 1, 2000, and March 31, 2016, and a Delphi process to gain expert consensus and validate inputs. We aggregated country models to create a regional EU model. We used the EU model to forecast HCV disease progression (considering the effect of immigration) and developed a strategy to acehive WHO targets. We used weighted average sustained viral response rates and fibrosis restrictions to model the effect of current therapeutic guidelines. We used the EU model to forecast HCV disease progression (considering the effect of immigration) under current screening and therapeutic guidelines. Additionally, we back-calculated the total number of patients needing to be screened and treated to achieve WHO targets. FINDINGS: We estimated the number of viraemic HCV infections in 2015 to be 3 238 000 (95% uncertainty interval [UI] 2 106 000-3 795 000) of a total population of 509 868 000 in the EU, equating to a prevalence of viraemic HCV of 0·64% (95% UI 0·41-0·74). We estimated that 1 180 000 (95% UI 1 003 000-1 357 000) people were diagnosed with viraemia (36·4%), 150 000 (12 000-180 000) were treated (4·6% of the total infected population or 12·7% of the diagnosed population), 133 000 (106 000-160 000) were cured (4·1%), and 57 900 (43 900-67 300) were newly infected (1·8%) in 2015. Additionally, 30 400 (26 600-42 500) HCV-positive immigrants entered the EU. To achieve WHO targets, unrestricted treatment needs to increase from 150 000 patients in 2015 to 187 000 patients in 2025 and diagnosis needs to increase from 88 800 new cases annually in 2015 to 180 000 in 2025. INTERPRETATION: Given its advanced health-care infrastructure, the EU is uniquely poised to eliminate HCV; however, expansion of screening programmes is essential to increase treatment to achieve the WHO targets. A united effort, grounded in sound epidemiological evidence, will also be necessary

    Strategies to manage hepatitis C virus infection disease burden - volume 3.

    Get PDF
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageThe hepatitis C virus (HCV) epidemic was forecasted through 2030 for 15 countries in Europe, the Middle East and Asia, and the relative impact of two scenarios was considered: increased treatment efficacy while holding the annual number of treated patients constant and increased treatment efficacy and an increased annual number of treated patients. Increasing levels of diagnosis and treatment, in combination with improved treatment efficacy, were critical for achieving substantial reductions in disease burden. A 90% reduction in total HCV infections within 15 years is feasible in most countries studied, but it required a coordinated effort to introduce harm reduction programmes to reduce new infections, screening to identify those already infected and treatment with high cure rate therapies. This suggests that increased capacity for screening and treatment will be critical in many countries. Birth cohort screening is a helpful tool for maximizing resources. Among European countries, the majority of patients were born between 1940 and 1985. A wider range of birth cohorts was seen in the Middle East and Asia (between 1925 and 1995).Gilead Sciences Center for Disease Analysi

    Borislav Runanine as the Friend of the Prince (centre), Tamara Toumanova as the Queen of the Swans (centre), Paul Petroff as the Prince (centre right), and artists of the company, in Le lac des cygnes, the Original Ballet Russe, Australian tour, His Majesty's Theatre, Melbourne, 1940 [picture] /

    Get PDF
    From: Le lac des cygnes (Swan lake) : choreographic poem in one act / music by Peter Ilich Tchaikovsky; Part of the collection: Hugh P. Hall collection of photographs, 1938-1940.; Performed March and April 1940. No number on front. 3P/9 on reverse.; Choreography after M. Petipa ; scenery and costumes by C. Korovine ; scenery executed by O. Allegri.; Also available in an electronic version via the internet at: http://nla.gov.au/nla.pic-vn4175672. One of a collection of photographs taken by Hugh P. Hall of 28 ballet productions performed by the Covent Garden Russian Ballet (toured Australia 1938-1939) and the Original Ballet Russe (toured Australia 1939-1940). These are the second and third of the three Ballets Russes companies which toured Australasia between 1936 and 1940. The photographs were taken from the auditorium during a live performance in His Majesty's Theatre, Melbourne and mounted on cardboard for display purposes. For conservation and storage, the photographs have been demounted. The original arrangement of the photographs has been recorded, and details are available from the Pictures Branch of the National Library

    Historical epidemiology of hepatitis C virus (HCV) in select countries - volume 3.

    Get PDF
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageDetailed, country-specific epidemiological data are needed to characterize the burden of chronic hepatitis C virus (HCV) infection around the world. With new treatment options available, policy makers and public health officials must reconsider national strategies for infection control. In this study of 15 countries, published and unpublished data on HCV prevalence, viraemia, genotype, age and gender distribution, liver transplants and diagnosis and treatment rates were gathered from the literature and validated by expert consensus in each country. Viraemic prevalence in this study ranged from 0.2% in Iran and Lebanon to 4.2% in Pakistan. The largest viraemic populations were in Pakistan (7 001 000 cases) and Indonesia (3 187 000 cases). Injection drug use (IDU) and a historically unsafe blood supply were major risk factors in most countries. Diagnosis, treatment and liver transplant rates varied widely between countries. However, comparison across countries was difficult as the number of cases changes over time. Access to reliable data on measures such as these is critical for the development of future strategies to manage the disease burden.Gilead Sciences Center for Disease Analysi
    corecore