48 research outputs found

    Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases

    Get PDF
    Dysfunctional mitochondria are a well-known disease hallmark. The accumulation of aberrant mitochondria can alter cell homeostasis, thus resulting in tissue degeneration. Lysosomal storage disorders (LSDs) are a group of inherited diseases characterized by the buildup of undegraded material inside the lysosomes that leads to autophagic-lysosomal dysfunction. In LSDs, autophagic stress has been associated to mitochondrial accumulation and dysfunction. However, the mechanisms underlying mitochondrial aberrations and how these are involved in tissue pathogenesis remain largely unexplored. In normal conditions, mitochondrial clearance occurs by mitophagy, a selective form of autophagy, which relies on a parkin-mediated mitochondrial priming and subsequent sequestration by autophagosomes. Here, we performed a detailed analysis of key steps of mitophagy in a mouse model of multiple sulfatase deficiency (MSD), a severe type of LSD characterized by both neurological and systemic involvement. We demonstrated that in MSD liver reduced parkin levels resulted in inefficient mitochondrial priming, thus contributing to the accumulation of giant mitochondria that are located outside autophagic vesicles ultimately leading to cytochrome c release and apoptotic cell death. Morphological and functional changes were also observed in mitochondria from MSD brain but these were not directly associated with neuronal cell loss, suggesting a secondary contribution of mitochondria to neurodegeneration. Together, these data shed new light on the mechanisms underlying mitochondrial dysfunction in LSDs and on their tissue-specific differential contribution to the pathogenesis of this group of metabolic disorders

    Neuropeptide S-Mediated Facilitation of Synaptic Transmission Enforces Subthreshold Theta Oscillations within the Lateral Amygdala

    Get PDF
    The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells. These effects were at least in part mediated by presynaptic mechanisms. In turn, inhibition of projection neurons by local interneurons was augmented by NPS, and subthreshold oscillations were strengthened, leading to their shift into the theta frequency range. These data suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape behavior-related network activity patterns in the amygdala and reflect the peptide's potent activity in various forms of affective behavior and emotional memory

    X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal–lysosomal dysfunction

    Get PDF
    Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium–hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium–hydrogen exchanger 6 deficiency would most likely disrupt the endosomal–lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium–hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for β-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium–hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal–lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert could provide a unified explanation for the cellular and clinical phenotypes in humans with SLC9A6 mutations

    The Lysosome and Intracellular Signalling.

    Get PDF
    In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed

    Progettazione e costruzione dei servizi tecnologici nel processo edilizio

    No full text
    I servizi tecnologici nel nostro Paese, alla soglia del terzo millennio, hanno una incidenza economica importante nelle costruzioni civili che è passata dal 15 - 20 % degli anni 50, a non meno del 35 - 40 % dei giorni nostri. Le norme intervenute negli ultimi 40 anni hanno contribuito a dare agli impianti, nell’ambito del processo edilizio, sempre maggiore peso garantendo all’utente condizioni eccellenti di sicurezza e comfort. Nel processo edilizio, grazie al legislatore, si è sviluppata l’esigenza della progettazione integrata, con l’intervento di figure professionali con specializzazioni fondamentalmente diverse, dall’architetto, passando per lo strutturista, fino all’idraulico, al termotecnico, all’elettrico ed all’elettronico, coordinati da un responsabile unico. Purtroppo nell’ordinamento dei nostri studi, non esistono figure in grado di gestire le diverse competenze degli studiosi e degli operatori che intervengono nel processo edilizio. Il progettista, qualunque sia la destinazione d’uso ed il tipo di impianto, dovrà attenersi alle seguenti regole elementari: enunciazione del problema, identificazione degli aspetti e delle funzioni, limiti, disponibilità tecnologiche, creatività ed il modello finale. Il progetto dell’intervento sostenibile può essere suddiviso in tre fasi tra loro strettamente correlate: l’analisi del sito, ovvero la lettura analitica dei fattori ambientali, climatici, storici e sociali, dai quali scaturiscono i dati di progetto funzionali alla definizione degli obiettivi progettuali; la definizione degli obiettivi progettuali, nell’ambito degli obiettivi generali della salvaguardia dell’ambiente ed uso razionale delle risorse; l’individuazione e la verifica delle soluzioni, in relazione agli obiettivi, per giungere alla definizione del progetto come sintesi organica di tutti gli ambiti coinvolti, edilizi e tecnologici. In questo lavoro vengono analizzati gli elementi qualificanti l’organismo edilizio finalizzati a garantire le condizioni di benessere degli utenti con l’utilizzo razionale delle risorse, e cioè: il controllo del soleggiamento, l’illuminazione naturale, la ventilazione naturale, l’isolamento e l’inerzia termica, la riduzione del consumo di acqua potabile ed il recupero delle acque meteoriche

    Amorous Attraction and the Role of Women in the Work of Giordano Bruno

    No full text
    Il contributo analizza le modalità di rappresentazione della figura femminile nelle opere di Bruno, con particolare riferimento a quelle teatral
    corecore