275 research outputs found

    Avoimen systeemin magmaattisten prosessien diagnosointi Magmakammiosimulaattorilla. Osa II: hivenalkuaineet ja isotoopit

    Get PDF
    The Magma Chamber Simulator (MCS) is a thermodynamic model that computes the phase, thermal, and compositional evolution of a multiphase–multicomponent system of a Fractionally Crystallizing resident body of magma (i.e., melt ± solids ± fluid), linked wallrock that may either be assimilated as Anatectic melts or wholesale as Stoped blocks, and multiple Recharge reservoirs (RnASnFC system, where n is the number of user-selected recharge events). MCS calculations occur in two stages; the first utilizes mass and energy balance to produce thermodynamically constrained major element and phase equilibria information for an RnASnFC system; this tool is informally called MCS-PhaseEQ, and is described in a companion paper (Bohrson et al. 2020). The second stage of modeling, called MCS-Traces, calculates the RASFC evolution of up to 48 trace elements and seven radiogenic and one stable isotopic system (Sr, Nd, Hf, 3xPb, Os, and O) for the resident melt. In addition, trace element concentrations are calculated for bulk residual wallrock and each solid (± fluid) phase in the cumulate reservoir and residual wallrock. Input consists of (1) initial trace element concentrations and isotope ratios for the parental melt, wallrock, and recharge magmas/stoped wallrock blocks and (2) solid-melt and solid–fluid partition coefficients (optional temperature-dependence) for stable phases in the resident magma and residual wallrock. Output can be easily read and processed from tabulated worksheets. We provide trace element and isotopic results for the same example cases (FC, R2FC, AFC, S2FC, and R2AFC) presented in the companion paper. These simulations show that recharge processes can be difficult to recognize based on trace element data alone unless there is an independent reference frame of successive recharge events or if serial recharge magmas are sufficiently distinct in composition relative to the parental magma or magmas on the fractionation trend. In contrast, assimilation of wallrock is likely to have a notable effect on incompatible trace element and isotopic compositions of the contaminated resident melt. The magnitude of these effects depends on several factors incorporated into both stages of MCS calculations (e.g., phase equilibria, trace element partitioning, style of assimilation, and geochemistry of the starting materials). Significantly, the effects of assimilation can be counterintuitive and very different from simple scenarios (e.g., bulk mixing of magma and wallrock) that do not take account phase equilibria. Considerable caution should be practiced in ruling out potential assimilation scenarios in natural systems based upon simple geochemical “rules of thumb”. The lack of simplistic responses to open-system processes underscores the need for thermodynamical RASFC models that take into account mass and energy conservation. MCS-Traces provides an unprecedented and detailed framework for utilizing thermodynamic constraints and element partitioning to document trace element and isotopic evolution of igneous systems. Continued development of the Magma Chamber Simulator will focus on easier accessibility and additional capabilities that will allow the tool to better reproduce the documented natural complexities of open-system magmatic processes.Peer reviewe

    Avoimen systeemin magmaattisten prosessien diagnosointi Magmakammiosimulaattorilla. Osa I: pääalkuaineet ja faasitasapainot

    Get PDF
    The Magma Chamber Simulator (MCS) is a thermodynamic tool for modeling the evolution of magmatic systems that are open with respect to assimilation of partial melts or stoped blocks, magma recharge + mixing, and fractional crystallization. MCS is available for both PC and Mac. In the MCS, the thermal, mass, and compositional evolution of a multicomponent-multiphase composite system of resident magma, wallrock, and recharge reservoirs is tracked by rigorous self-consistent thermodynamic modeling. A Recharge-Assimilation (Assimilated partial melt or Stoped blocks)-Fractional Crystallization (R(n)AS(n)FC;n(tot) The trace element and isotope MCS computational tool (MCS-Traces) is described in a separate contribution (part II).Peer reviewe

    Age of the Donor Reduces the Ability of Human Adipose-Derived Stem Cells to Alleviate Symptoms in the Experimental Autoimmune Encephalomyelitis Mouse Model

    Get PDF
    There is a significant clinical need for effective therapies for primary progressive multiple sclerosis, which presents later in life (i.e., older than 50 years) and has symptoms that increase in severity without remission. With autologous mesenchymal stem cell therapy now in the early phases of clinical trials for all forms of multiple sclerosis (MS), it is necessary to determine whether autologous stem cells from older donors have therapeutic effectiveness. In this study, the therapeutic efficacy of human adipose-derived mesenchymal stem cells (ASCs) from older donors was directly compared with that of cells from younger donors for disease prevention. Mice were induced with chronic experimental autoimmune encephalomyelitis (EAE) using the myelin oligodendrocyte glycoprotein35-55 peptide and treated before disease onset with ASCs derived from younger ( \u3c 35 years) or older ( \u3e 60 years) donors. ASCs from older donors failed to ameliorate the neurodegeneration associated with EAE, and mice treated with older donor cells had increased central nervous system inflammation, demyelination, and splenocyte proliferation in vitro compared with the mice receiving cells from younger donors. Therefore, the results of this study demonstrated that donor age significantly affects the ability of human ASCs to provide neuroprotection, immunomodulation, and/or remyelination in EAE mice. The age-related therapeutic differences corroborate recent findings that biologic aging occurs in stem cells, and the differences are supported by evidence in this study that older ASCs, compared with younger donor cells, secrete less hepatocyte growth factor and other bioactive molecules when stimulated in vitro. These results highlight the need for evaluation of autologous ASCs derived from older patients when used as therapy for MS

    Sphingosine 1 Phosphate (S1P) Receptor 1 Is Decreased in Human Lung Microvascular Endothelial Cells of Smokers and Mediates S1P Effect on Autophagy

    Get PDF
    Destruction of alveoli by apoptosis induced by cigarette smoke (CS) is a major driver of emphysema pathogenesis. However, when compared to cells isolated from non-smokers, primary human lung microvascular endothelial cells (HLMVECs) isolated from chronic smokers are more resilient when exposed to apoptosis-inducing ceramide. Whether this adaptation restores homeostasis is unknown. To better understand the phenotype of HLMVEC in smokers, we interrogated a major pro-survival pathway supported by sphingosine-1-phosphate (S1P) signaling via S1P receptor 1 (S1P1). Primary HLMVECs from lungs of non-smoker or smoker donors were isolated and studied in culture for up to five passages. S1P1 mRNA and protein abundance were significantly decreased in HLMVECs from smokers compared to non-smokers. S1P1 was also decreased in situ in lungs of mice chronically exposed to CS. Levels of S1P1 expression tended to correlate with those of autophagy markers, and increasing S1P (via S1P lyase knockdown with siRNA) stimulated baseline macroautophagy with lysosomal degradation. In turn, loss of S1P1 (siRNA) inhibited these effects of S1P on HLMVECs autophagy. These findings suggest that the anti-apoptotic phenotype of HLMVECs from smokers may be maladaptive, since it is associated with decreased S1P1 expression that may impair their autophagic response to S1P

    Historical institutionalism and the politics of sustainable energy transitions: a research agenda

    Get PDF
    Improving the understanding of the politics of sustainable energy transitions has become a major focus for research. This paper builds on recent interest in institutionalist approaches to consider in some depth the agenda arising from a historical institutionalist perspective on such transitions. It is argued that historical institutionalism is a valuable complement to socio-technical systems approaches, offering tools for the explicit analysis of institutional dynamics that are present but implicit in the latter framework, opening up new questions and providing useful empirical material relevant for the study of the wider political contexts within which transitions are emerging. Deploying a number of core concepts including veto players, power, unintended consequences, and positive and negative feedback in a variety of ways, the paper explores research agendas in two broad areas: understanding diversity in transition outcomes in terms of the effects of different institutional arrangements, and the understanding of transitions in terms of institutional development and change. A range of issues are explored, including: the roles of electoral and political institutions, regulatory agencies, the creation of politically credible commitment to transition policies, power and incumbency, institutional systems and varieties of capitalism, sources of regime stability and instability, policy feedback effects, and types of gradual institutional change. The paper concludes with some observations on the potential and limitations of historical institutionalism, and briefly considers the question of whether there may be specific institutional configurations that would facilitate more rapid sustainable energy transitions

    Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning.

    Get PDF
    Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior.This work was supported by Medical Research Council Grants (G0701500; G0802729), a 503 Wellcome Trust Programme Grant (grant number 089589/Z/09/Z), and by a Core Award 504 from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical 505 21 Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). RLB was supported 506 by a studentship from the Medical Research Council. JA was supported by a Fellowship from 507 the Swedish Research Council (350-2012-230). BJ was supported by Fellowships from the 508 AXA Research Fund and the National Health and Medical Research Council of Australia. 509 Financial support from the Fredrik and Ingrid Thuring Foundation is also acknowledged.This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/npp/journal/vaop/ncurrent/full/npp2014335a.html

    Interactive effects of mGlu5 and 5-HT2A receptors on locomotor activity in mice

    Get PDF
    RationaleMetabotropic glutamate (mGlu) receptors have been suggested to play a role in neuropsychiatric disorders including schizophrenia, drug abuse, and depression. Because serotonergic hallucinogens increase glutamate release and mGlu receptors modulate the response to serotonin (5-HT)(2A) activation, the interactions between serotonin 5-HT(2A) receptors and mGlu receptors may prove to be important for our understanding of these diseases.ObjectiveWe tested the effects of the serotonergic hallucinogen and 5-HT(2A) agonist, 2,5-dimethoxy-4-methylamphetamine (DOM), and the selective 5-HT(2A) antagonist, M100907, on locomotor activity in the mouse behavioral pattern monitor (BPM) in mGlu5 wild-type (WT) and knockout (KO) mice on a C57 background.ResultsBoth male and female mGlu5 KO mice showed locomotor hyperactivity and diminished locomotor habituation compared with their WT counterparts. Similarly, the mGlu5-negative allosteric modulator 2-methyl-6-(phenylethynyl)pyridine (MPEP) also increased locomotor hyperactivity, which was absent in mGlu5 KO mice. The locomotor hyperactivity in mGlu5 receptor KO mice was potentiated by DOM (0.5 mg/kg, subcutaneously (SC)) and attenuated by M100907 (1.0 mg/kg, SC). M100907 (0.1 mg/kg, SC) also blocked the hyperactivity induced by MPEP.ConclusionsThese studies demonstrated that loss of mGlu5 receptor activity either pharmacologically or through gene deletion leads to locomotor hyperactivity in mice. Additionally, the gene deletion of mGlu5 receptors increased the behavioral response to the 5-HT(2A) agonist DOM, suggesting that mGlu5 receptors either mitigate the behavioral effects of 5-HT(2A) hallucinogens or that mGlu5 KO mice show an increased sensitivity to 5-HT(2A) agonists. Taken together, these studies indicate a functional interaction between mGlu5 and 5-HT(2A) receptors
    • …
    corecore