550 research outputs found

    Transfer Matrices and Excitations with Matrix Product States

    Full text link
    We investigate the relation between static correlation functions in the ground state of local quantum many-body Hamiltonians and the dispersion relations of the corresponding low energy excitations using the formalism of tensor network states. In particular, we show that the Matrix Product State Transfer Matrix (MPS-TM) - a central object in the computation of static correlation functions - provides important information about the location and magnitude of the minima of the low energy dispersion relation(s) and present supporting numerical data for one-dimensional lattice and continuum models as well as two-dimensional lattice models on a cylinder. We elaborate on the peculiar structure of the MPS-TM's eigenspectrum and give several arguments for the close relation between the structure of the low energy spectrum of the system and the form of static correlation functions. Finally, we discuss how the MPS-TM connects to the exact Quantum Transfer Matrix (QTM) of the model at zero temperature. We present a renormalization group argument for obtaining finite bond dimension approximations of MPS, which allows to reinterpret variational MPS techniques (such as the Density Matrix Renormalization Group) as an application of Wilson's Numerical Renormalization Group along the virtual (imaginary time) dimension of the system.Comment: 39 pages (+8 pages appendix), 14 figure

    Time Evolution within a Comoving Window: Scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains

    Full text link
    We present a modification of Matrix Product State time evolution to simulate the propagation of signal fronts on infinite one-dimensional systems. We restrict the calculation to a window moving along with a signal, which by the Lieb-Robinson bound is contained within a light cone. Signal fronts can be studied unperturbed and with high precision for much longer times than on finite systems. Entanglement inside the window is naturally small, greatly lowering computational effort. We investigate the time evolution of the transverse field Ising (TFI) model and of the S=1/2 XXZ antiferromagnet in their symmetry broken phases after several different local quantum quenches. In both models, we observe distinct magnetization plateaus at the signal front for very large times, resembling those previously observed for the particle density of tight binding (TB) fermions. We show that the normalized difference to the magnetization of the ground state exhibits similar scaling behaviour as the density of TB fermions. In the XXZ model there is an additional internal structure of the signal front due to pairing, and wider plateaus with tight binding scaling exponents for the normalized excess magnetization. We also observe parameter dependent interaction effects between individual plateaus, resulting in a slight spatial compression of the plateau widths. In the TFI model, we additionally find that for an initial Jordan-Wigner domain wall state, the complete time evolution of the normalized excess longitudinal magnetization agrees exactly with the particle density of TB fermions.Comment: 10 pages with 5 figures. Appendix with 23 pages, 13 figures and 4 tables. Largely extended and improved versio

    Measurement-based quantum computation beyond the one-way model

    Get PDF
    We introduce novel schemes for quantum computing based on local measurements on entangled resource states. This work elaborates on the framework established in [Phys. Rev. Lett. 98, 220503 (2007), quant-ph/0609149]. Our method makes use of tools from many-body physics - matrix product states, finitely correlated states or projected entangled pairs states - to show how measurements on entangled states can be viewed as processing quantum information. This work hence constitutes an instance where a quantum information problem - how to realize quantum computation - was approached using tools from many-body theory and not vice versa. We give a more detailed description of the setting, and present a large number of new examples. We find novel computational schemes, which differ from the original one-way computer for example in the way the randomness of measurement outcomes is handled. Also, schemes are presented where the logical qubits are no longer strictly localized on the resource state. Notably, we find a great flexibility in the properties of the universal resource states: They may for example exhibit non-vanishing long-range correlation functions or be locally arbitrarily close to a pure state. We discuss variants of Kitaev's toric code states as universal resources, and contrast this with situations where they can be efficiently classically simulated. This framework opens up a way of thinking of tailoring resource states to specific physical systems, such as cold atoms in optical lattices or linear optical systems.Comment: 21 pages, 7 figure

    Exact symmetry breaking ground states for quantum spin chains

    Full text link
    We introduce a family of spin-1/2 quantum chains, and show that their exact ground states break the rotational and translational symmetries of the original Hamiltonian. We also show how one can use projection to construct a spin-3/2 quantum chain with nearest neighbor interaction, whose exact ground states break the rotational symmetry of the Hamiltonian. Correlation functions of both models are determined in closed form. Although we confine ourselves to examples, the method can easily be adapted to encompass more general models.Comment: 4 pages, RevTex. 4 figures, minor changes, new reference

    From Lagrangian to Quantum Mechanics with Symmetries

    Full text link
    We present an old and regretfully forgotten method by Jacobi which allows one to find many Lagrangians of simple classical models and also of nonconservative systems. We underline that the knowledge of Lie symmetries generates Jacobi last multipliers and each of the latter yields a Lagrangian. Then it is shown that Noether's theorem can identify among those Lagrangians the physical Lagrangian(s) that will successfully lead to quantization. The preservation of the Noether symmetries as Lie symmetries of the corresponding Schr\"odinger equation is the key that takes classical mechanics into quantum mechanics. Some examples are presented.Comment: To appear in: Proceedings of Symmetries in Science XV, Journal of Physics: Conference Series, (2012

    Entanglement and correlation functions following a local quench: a conformal field theory approach

    Full text link
    We show that the dynamics resulting from preparing a one-dimensional quantum system in the ground state of two decoupled parts, then joined together and left to evolve unitarily with a translational invariant Hamiltonian (a local quench), can be described by means of quantum field theory. In the case when the corresponding theory is conformal, we study the evolution of the entanglement entropy for different bi-partitions of the line. We also consider the behavior of one- and two-point correlation functions. All our findings may be explained in terms of a picture, that we believe to be valid more generally, whereby quasiparticles emitted from the joining point at the initial time propagate semiclassically through the system.Comment: 19 pages, 4 figures, v2 typos corrected and refs adde

    Time evolution of 1D gapless models from a domain-wall initial state: SLE continued?

    Full text link
    We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain-wall. We generalize the path-integral imaginary time approach that together with boundary conformal field theory allows to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic \kappa for boundary conditions corresponding to SLE. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state.Comment: 27 pages, 10 figure

    Quantum harmonic oscillator systems with disorder

    Full text link
    We study many-body properties of quantum harmonic oscillator lattices with disorder. A sufficient condition for dynamical localization, expressed as a zero-velocity Lieb-Robinson bound, is formulated in terms of the decay of the eigenfunction correlators for an effective one-particle Hamiltonian. We show how state-of-the-art techniques for proving Anderson localization can be used to prove that these properties hold in a number of standard models. We also derive bounds on the static and dynamic correlation functions at both zero and positive temperature in terms of one-particle eigenfunction correlators. In particular, we show that static correlations decay exponentially fast if the corresponding effective one-particle Hamiltonian exhibits localization at low energies, regardless of whether there is a gap in the spectrum above the ground state or not. Our results apply to finite as well as to infinite oscillator systems. The eigenfunction correlators that appear are more general than those previously studied in the literature. In particular, we must allow for functions of the Hamiltonian that have a singularity at the bottom of the spectrum. We prove exponential bounds for such correlators for some of the standard models

    Entanglement renormalization and boundary critical phenomena

    Full text link
    The multiscale entanglement renormalization ansatz is applied to the study of boundary critical phenomena. We compute averages of local operators as a function of the distance from the boundary and the surface contribution to the ground state energy. Furthermore, assuming a uniform tensor structure, we show that the multiscale entanglement renormalization ansatz implies an exact relation between bulk and boundary critical exponents known to exist for boundary critical systems.Comment: 6 pages, 4 figures; for a related work see arXiv:0912.164
    corecore