151 research outputs found

    Clinicopathologic predictors of finding additional inguinal lymph node metastases in penile cancer patients following positive dynamic sentinel node biopsy:a European multicentre evaluation

    Get PDF
    OBJECTIVES: Following tumour positive sentinel lymph node biopsy (+DSNB), completion inguinal lymph node dissection (ILND) is negative in 84-89% of basins. Thus, ILND after +DSNB may be considered overtreatment resulting in substantial morbidity. This study aimed to develop a predictive model for additional inguinal lymph node metastases (LNM) at ILND following +DSNB using DSNB characteristics to identify a patient group in which ILND might be omitted. PATIENTS AND METHODS: A retrospective study of 407 inguinal basins with a +DSNB of penile cancer patients who underwent subsequent ILND from seven European centres. From the histopathology reports, the number of positive and negative lymph nodes, extranodal extension and size of the metastasis were recorded. Using bootstrapped logistic regression, variables were selected for the clinical prediction model based on the optimisation of Akaike's information criterion. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated for the resulting model. Decision curve analysis (DCA) was used to evaluate the clinical utility of the model. RESULTS: 64 (16%) of +DSNB harboured additional LNM at ILND. The number of positive nodes at +DSNB (odds ratio (OR) 2.19; 95% confidence interval (CI) 1.17-4.00; p=0.01) and the largest metastasis size in mm (OR 1.06; 95%CI 1.03-1.10; p=0.001) were selected for the clinical prediction model. The AUC was 0.67 (95%CI 0.60-0.74). The DCA showed no clinical benefit of using the clinical prediction model. CONCLUSION: A small but clinically important group of basins harbour additional LNM at completion ILND following +DSNB. While DSNB characteristics were associated with additional LNM, they did not improve the selection of basins in which ILND could be omitted. Thus, completion ILND remains necessary in all basins with a +DSNB

    Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs

    Get PDF
    The function of most proteins is not determined experimentally, but is extrapolated from homologs. According to the “ortholog conjecture”, or standard model of phylogenomics, protein function changes rapidly after duplication, leading to paralogs with different functions, while orthologs retain the ancestral function. We report here that a comparison of experimentally supported functional annotations among homologs from 13 genomes mostly supports this model. We show that to analyze GO annotation effectively, several confounding factors need to be controlled: authorship bias, variation of GO term frequency among species, variation of background similarity among species pairs, and propagated annotation bias. After controlling for these biases, we observe that orthologs have generally more similar functional annotations than paralogs. This is especially strong for sub-cellular localization. We observe only a weak decrease in functional similarity with increasing sequence divergence. These findings hold over a large diversity of species; notably orthologs from model organisms such as E. coli, yeast or mouse have conserved function with human proteins

    Differential radiosensitisation by ZD1839 (Iressa), a highly selective epidermal growth factor receptor tyrosine kinase inhibitor in two related bladder cancer cell lines

    Get PDF
    The epidermal growth factor receptor (EGFR) is expressed in a wide variety of epithelial tumours including carcinoma of the bladder. Stimulation of the EGFR pathway is blocked by ZD1839 (Iressa), a highly selective EGFR tyrosine kinase inhibitor. Radical radiotherapy is an established organ sparing treatment option for muscle invasive bladder cancer and this study has explored the possibility for the use of ZD1839 as a radiosensitiser in this scenario. The effect of combination treatment with ZD1839 (0.01 μM) and ionising radiation in the established bladder cancer cell lines MGH-U1 and its radiosensitive mutant clone S40b was measured by clonogenic assays. A highly significant radiosensitising effect was seen in both cell lines (P<0.001 for MGH-U1 and S40b cell lines). This effect was independent of the concentration of the drug and the duration of exposure prior to treatment with ionising radiation. Cell cycle kinetics of both cell lines was not significantly altered with ZD1839 (0.01 μM) as a single agent. A modest induction of apoptosis was observed with ZD1839 (0.01 μM) as a single agent, but a marked induction was observed with the combination treatment of ZD1839 and ionising radiation. These results suggest a potentially important role for ZD1839 in combination with radiotherapy in the treatment of muscle invasive bladder cancer

    Engineered Picornavirus VPg-RNA Substrates: Analysis of a Tyrosyl-RNA Phosphodiesterase Activity

    Get PDF
    Using poliovirus, the prototypic member of Picornaviridae, we have further characterized a host cell enzymatic activity found in uninfected cells, termed “unlinkase,” that recognizes and cleaves the unique 5′ tyrosyl-RNA phosphodiester bond found at the 5′ end of picornavirus virion RNAs. This bond connects VPg, a viral-encoded protein primer essential for RNA replication, to the viral RNA; it is cleaved from virion RNA prior to its engaging in protein synthesis as mRNA. Due to VPg retention on nascent RNA strands and replication templates, but not on viral mRNA, we hypothesize that picornaviruses utilize unlinkase activity as a means of controlling the ratio of viral RNAs that are translated versus those that either serve as RNA replication templates or are encapsidated. To test our hypothesis and further characterize this enzyme, we have developed a novel assay to detect unlinkase activity. We demonstrate that unlinkase activity can be detected using this assay, that this unique activity remains unchanged over the course of a poliovirus infection in HeLa cells, and that unlinkase activity is unaffected by the presence of exogenous VPg or anti-VPg antibodies. Furthermore, we have determined that unlinkase recognizes and cleaves a human rhinovirus-poliovirus chimeric substrate with the same efficiency as the poliovirus substrate

    Searching the protein structure database for ligand-binding site similarities using CPASS v.2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2) database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR) protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function.</p> <p>Findings</p> <p>We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG) to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cβ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated.</p> <p>Conclusions</p> <p>CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores for false positives by ~30%, while leaving true positives unaffected. Importantly, receiver operating characteristics (ROC) curves demonstrate the high correlation between CPASS similarity scores and an accurate functional assignment. As indicated by distribution curves, scores ≥ 30% infer a functional similarity. Software URL: <url>http://cpass.unl.edu</url>.</p

    Local Function Conservation in Sequence and Structure Space

    Get PDF
    We assess the variability of protein function in protein sequence and structure space. Various regions in this space exhibit considerable difference in the local conservation of molecular function. We analyze and capture local function conservation by means of logistic curves. Based on this analysis, we propose a method for predicting molecular function of a query protein with known structure but unknown function. The prediction method is rigorously assessed and compared with a previously published function predictor. Furthermore, we apply the method to 500 functionally unannotated PDB structures and discuss selected examples. The proposed approach provides a simple yet consistent statistical model for the complex relations between protein sequence, structure, and function. The GOdot method is available online (http://godot.bioinf.mpi-inf.mpg.de)

    Detection of a Fourth Orbivirus Non-Structural Protein

    Get PDF
    The genus Orbivirus includes both insect and tick-borne viruses. The orbivirus genome, composed of 10 segments of dsRNA, encodes 7 structural proteins (VP1–VP7) and 3 non-structural proteins (NS1–NS3). An open reading frame (ORF) that spans almost the entire length of genome segment-9 (Seg-9) encodes VP6 (the viral helicase). However, bioinformatic analysis recently identified an overlapping ORF (ORFX) in Seg-9. We show that ORFX encodes a new non-structural protein, identified here as NS4. Western blotting and confocal fluorescence microscopy, using antibodies raised against recombinant NS4 from Bluetongue virus (BTV, which is insect-borne), or Great Island virus (GIV, which is tick-borne), demonstrate that these proteins are synthesised in BTV or GIV infected mammalian cells, respectively. BTV NS4 is also expressed in Culicoides insect cells. NS4 forms aggregates throughout the cytoplasm as well as in the nucleus, consistent with identification of nuclear localisation signals within the NS4 sequence. Bioinformatic analyses indicate that NS4 contains coiled-coils, is related to proteins that bind nucleic acids, or are associated with membranes and shows similarities to nucleolar protein UTP20 (a processome subunit). Recombinant NS4 of GIV protects dsRNA from degradation by endoribonucleases of the RNAse III family, indicating that it interacts with dsRNA. However, BTV NS4, which is only half the putative size of the GIV NS4, did not protect dsRNA from RNAse III cleavage. NS4 of both GIV and BTV protect DNA from degradation by DNAse. NS4 was found to associate with lipid droplets in cells infected with BTV or GIV or transfected with a plasmid expressing NS4
    corecore