39 research outputs found

    Differences between Belgian and Brazilian Group A Streptococcus Epidemiologic Landscape

    Get PDF
    BACKGROUND: Group A Streptococcus (GAS) clinical and molecular epidemiology varies with location and time. These differences are not or are poorly understood. METHODS AND FINDINGS: We prospectively studied the epidemiology of GAS infections among children in outpatient hospital clinics in Brussels (Belgium) and Brasília (Brazil). Clinical questionnaires were filled out and microbiological sampling was performed. GAS isolates were emm-typed according to the Center for Disease Control protocol. emm pattern was predicted for each isolate. 334 GAS isolates were recovered from 706 children. Skin infections were frequent in Brasília (48% of the GAS infections), whereas pharyngitis were predominant (88%) in Brussels. The mean age of children with GAS pharyngitis in Brussels was lower than in Brasília (65/92 months, p<0.001). emm-typing revealed striking differences between Brazilian and Belgian GAS isolates. While 20 distinct emm-types were identified among 200 Belgian isolates, 48 were found among 128 Brazilian isolates. Belgian isolates belong mainly to emm pattern A–C (55%) and E (42.5%) while emm pattern E (51.5%) and D (36%) were predominant in Brasília. In Brasília, emm pattern D isolates were recovered from 18.5% of the pharyngitis, although this emm pattern is supposed to have a skin tropism. By contrast, A–C pattern isolates were unfrequently recovered in a region where rheumatic fever is still highly prevalent. CONCLUSIONS: Epidemiologic features of GAS from a pediatric population were very different in an industrialised country and a low incomes region, not only in term of clinical presentation, but also in terms of genetic diversity and distribution of emm patterns. These differences should be taken into account for designing treatment guidelines and vaccine strategies

    Population Genetics of Streptococcus dysgalactiae Subspecies equisimilis Reveals Widely Dispersed Clones and Extensive Recombination

    Get PDF
    Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen that can colonize and infect humans. Although most SDSE isolates possess the Lancefield group G carbohydrate, a significant minority have the group C carbohydrate. Isolates are further sub-typed on the basis of differences within the emm gene. To gain a better understanding of their molecular epidemiology and evolutionary relationships, multilocus sequence typing (MLST) analysis was performed on SDSE isolates collected from Australia, Europe and North America.The 178 SDSE isolates, representing 37 emm types, segregate into 80 distinct sequence types (STs) that form 17 clonal complexes (CCs). Eight STs recovered from all three continents account for >50% of the isolates. Thus, a small number of STs are highly prevalent and have a wide geographic distribution. Both ST and CC strongly correlate with group carbohydrate. In contrast, eleven STs were associated with >1 emm type, suggestive of recombinational replacements involving the emm gene; furthermore, 35% of the emm types are associated with genetically distant STs. Data also reveal a history of extensive inter- and intra-species recombination involving the housekeeping genes used for MLST. Sequence analysis of single locus variants identified through goeBURST indicates that genetic change mediated by recombination occurred approximately 4.4 times more frequently than by point mutation.A few genetic lineages with an intercontinental distribution dominate among SDSE causing infections in humans. The distinction between group C and G isolates reflects recent evolution, and no long-term genetic isolation between them was found. Lateral gene transfer and recombination involving housekeeping genes and the emm gene are important mechanisms driving genetic variability in the SDSE population

    Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease

    Get PDF
    BACKGROUND: The cholesteryl ester transfer protein inhibitor evacetrapib substantially raises the high-density lipoprotein (HDL) cholesterol level, reduces the low-density lipoprotein (LDL) cholesterol level, and enhances cellular cholesterol efflux capacity. We sought to determine the effect of evacetrapib on major adverse cardiovascular outcomes in patients with high-risk vascular disease. METHODS: In a multicenter, randomized, double-blind, placebo-controlled phase 3 trial, we enrolled 12,092 patients who had at least one of the following conditions: an acute coronary syndrome within the previous 30 to 365 days, cerebrovascular atherosclerotic disease, peripheral vascular arterial disease, or diabetes mellitus with coronary artery disease. Patients were randomly assigned to receive either evacetrapib at a dose of 130 mg or matching placebo, administered daily, in addition to standard medical therapy. The primary efficacy end point was the first occurrence of any component of the composite of death from cardiovascular causes, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina. RESULTS: At 3 months, a 31.1% decrease in the mean LDL cholesterol level was observed with evacetrapib versus a 6.0% increase with placebo, and a 133.2% increase in the mean HDL cholesterol level was seen with evacetrapib versus a 1.6% increase with placebo. After 1363 of the planned 1670 primary end-point events had occurred, the data and safety monitoring board recommended that the trial be terminated early because of a lack of efficacy. After a median of 26 months of evacetrapib or placebo, a primary end-point event occurred in 12.9% of the patients in the evacetrapib group and in 12.8% of those in the placebo group (hazard ratio, 1.01; 95% confidence interval, 0.91 to 1.11; P=0.91). CONCLUSIONS: Although the cholesteryl ester transfer protein inhibitor evacetrapib had favorable effects on established lipid biomarkers, treatment with evacetrapib did not result in a lower rate of cardiovascular events than placebo among patients with high-risk vascular disease. (Funded by Eli Lilly; ACCELERATE ClinicalTrials.gov number, NCT01687998 .)

    Enzyme immobilization in reactive nanoparticles produced by inverse microemulsion polymerization

    Full text link
    This paper deals with the immobilization of alkaline phosphatase by physical entrapment within colloidal particles produced by inverse microemulsion polymerization. Functionality has been imparted to the nanoparticle surface by copolymerization of acrylamide (the main monomer), N,N'-methylene-bis-acrylamide (the cross-linking agent) with either N-acryloyl-l,6-diamino-hexane (an amine promoter) or acrylic acid (a carboxylic acid promoter). The effect of the functions comonomers on the size and zeta potential of the reactive latexes has been studied. Integrity of the immobilized enzyme has been ascertained from its catalytic activity towards hydrolysis of p-nitrophenyl-phosphate
    corecore