628 research outputs found

    Solvation in atomic liquids: connection between Gaussian field theory and density functional theory

    Full text link
    For the problem of molecular solvation, formulated as a liquid submitted to the external potential field created by a molecular solute of arbitrary shape dissolved in that solvent, we draw a connection between the Gaussian field theory derived by David Chandler [Phys. Rev. E, 1993, 48, 2898] and classical density functional theory. We show that Chandler's results concerning the solvation of a hard core of arbitrary shape can be recovered by either minimising a linearised HNC functional using an auxiliary Lagrange multiplier field to impose a vanishing density inside the core, or by minimising this functional directly outside the core --- indeed a simpler procedure. Those equivalent approaches are compared to two other variants of DFT, either in the HNC, or partially linearised HNC approximation, for the solvation of a Lennard-Jones solute of increasing size in a Lennard-Jones solvent. Compared to Monte-Carlo simulations, all those theories give acceptable results for the inhomogeneous solvent structure, but are completely out-of-range for the solvation free-energies. This can be fixed in DFT by adding a hard-sphere bridge correction to the HNC functional.Comment: 14 pages, 4 figure

    Massive enhancement of electron-phonon coupling in doped graphene by an electronic singularity

    Get PDF
    The nature of the coupling leading to superconductivity in layered materials such as high-Tc superconductors and graphite intercalation compounds (GICs) is still unresolved. In both systems, interactions of electrons with either phonons or other electrons or both have been proposed to explain superconductivity. In the high-Tc cuprates, the presence of a Van Hove singularity (VHS) in the density of states near the Fermi level was long ago proposed to enhance the many-body couplings and therefore may play a role in superconductivity. Such a singularity can cause an anisotropic variation in the coupling strength, which may partially explain the so-called nodal-antinodal dichotomy in the cuprates. Here we show that the topology of the graphene band structure at dopings comparable to the GICs is quite similar to that of the cuprates and that the quasiparticle dynamics in graphene have a similar dichotomy. Namely, the electron-phonon coupling is highly anisotropic, diverging near a saddle point in the graphene electronic band structure. These results support the important role of the VHS in layered materials and the possible optimization of Tc by tuning the VHS with respect to the Fermi level.Comment: 8 page

    Cluster sum rules for three-body systems with angular-momentum dependent interactions

    Full text link
    We derive general expressions for non-energy weighted and energy-weighted cluster sum rules for systems of three charged particles. The interferences between pairs of particles are found to play a substantial role. The energy-weighted sum rule is usually determined by the kinetic energy operator, but we demonstrate that it has similar additional contributions from the angular momentum and parity dependence of two- and three-body potentials frequently used in three-body calculations. The importance of the different contributions is illustrated with the dipole excitations in 6^6He. The results are compared with the available experimental data.Comment: 11 pages, 3 figures, 2 table

    The electronic structure of the high-symmetry perovskite iridate Ba2IrO4

    Get PDF
    We report angle-resolved photoemission (ARPES) measurements, density functional and model tight-binding calculations on Ba2_2IrO4_4 (Ba-214), an antiferromagnetic (TN=230T_N=230 K) insulator. Ba-214 does not exhibit the rotational distortion of the IrO6_6 octahedra that is present in its sister compound Sr2_2IrO4_4 (Sr-214), and is therefore an attractive reference material to study the electronic structure of layered iridates. We find that the band structures of Ba-214 and Sr-214 are qualitatively similar, hinting at the predominant role of the spin-orbit interaction in these materials. Temperature-dependent ARPES data show that the energy gap persists well above TNT_N, and favour a Mott over a Slater scenario for this compound.Comment: 13 pages, 9 figure

    Electron-Phonon Coupling in Highly-Screened Graphene

    Full text link
    Photoemission studies of graphene have resulted in a long-standing controversy concerning the strength of the experimental electron-phonon interaction in comparison with theoretical calculations. Using high-resolution angle-resolved photoemission spectroscopy we study graphene grown on a copper substrate, where the metallic screening of the substrate substantially reduces the electron-electron interaction, simplifying the comparison of the electron-phonon interaction between theory and experiment. By taking the nonlinear bare bandstructure into account, we are able to show that the strength of the electron-phonon interaction does indeed agree with theoretical calculations. In addition, we observe a significant bandgap at the Dirac point of graphene.Comment: Submitted to Phys. Rev. Lett. on July 20, 201

    Quadrupolar 23^{23}Na+^{+} NMR Relaxation as a Probe of Subpicosecond Collective Dynamics in Aqueous Electrolyte Solutions

    Full text link
    Nuclear magnetic resonance relaxometry represents a powerful tool for extracting dynamic information. Yet, obtaining links to molecular motion is challenging for many ions that relax through the quadrupolar mechanism, which is mediated by electric field gradient fluctuations and lacks a detailed microscopic description. For sodium ions in aqueous electrolytes, we combine ab initio calculations to account for electron cloud effects with classical molecular dynamics to sample long-time fluctuations, and obtain relaxation rates in good agreement with experiments over broad concentration and temperature ranges. We demonstrate that quadrupolar nuclear relaxation is sensitive to subpicosecond dynamics not captured by previous models based on water reorientation or cluster rotation. While ions affect the overall water retardation, experimental trends are mainly explained by dynamics in the first two solvation shells of sodium, which contain mostly water. This work thus paves the way to the quantitative understanding of quadrupolar relaxation in electrolyte and bioelectrolyte systems.Comment: 36 pages, 25 figures, supplementary information include

    Effective range function below threshold

    Get PDF
    We demonstrate that the kernel of the Lippmann-Schwinger equation, associated with interactions consisting of a sum of the Coulomb plus a short range nuclear potential, below threshold becomes degenerate. Taking advantage of this fact, we present a simple method of calculating the effective range function for negative energies. This may be useful in practice since the effective range expansion extrapolated to threshold allows to extract low-energy scattering parameters: the Coulomb-modified scattering length and the effective range.Comment: 14 pages, 1 figur

    Morphology of graphene thin film growth on SiC(0001)

    Full text link
    Epitaxial films of graphene on SiC(0001) are interesting from a basic physics as well as applications-oriented point of view. Here we study the emerging morphology of in-vacuo prepared graphene films using low energy electron microscopy (LEEM) and angle-resolved photoemission (ARPES). We obtain an identification of single and bilayer of graphene film by comparing the characteristic features in electron reflectivity spectra in LEEM to the PI-band structure as revealed by ARPES. We demonstrate that LEEM serves as a tool to accurately determine the local extent of graphene layers as well as the layer thickness

    Interaction of intense vuv radiation with large xenon clusters

    Full text link
    The interaction of atomic clusters with short, intense pulses of laser light to form extremely hot, dense plasmas has attracted extensive experimental and theoretical interest. The high density of atoms within the cluster greatly enhances the atom--laser interaction, while the finite size of the cluster prevents energy from escaping the interaction region. Recent technological advances have allowed experiments to probe the laser--cluster interaction at very high photon energies, with interactions much stronger than suggested by theories for lower photon energies. We present a model of the laser--cluster interaction which uses non-perturbative R-matrix techniques to calculate inverse bremsstrahlung and photoionization cross sections for Herman-Skillman atomic potentials. We describe the evolution of the cluster under the influence of the processes of inverse bremsstrahlung heating, photoionization, collisional ionization and recombination, and expansion of the cluster. We compare charge state distribution, charge state ejection energies, and total energy absorbed with the Hamburg experiment of Wabnitz {\em et al.} [Nature {\bf 420}, 482 (2002)] and ejected electron spectra with Laarmann {\em et al.} [Phys. Rev. Lett. {\bf 95}, 063402 (2005)]
    corecore