2,349 research outputs found

    Kidney growth in normal and diabetic mice is not affected by human insulin-like growth factor binding protein-1 administration

    Get PDF
    Insulin-like growth factor I (IGF-I) accumulates in the kidney following the onset of diabetes, initiating diabetic renal hypertrophy. Increased renal IGF-I protein content, which is not reflected in messenger RNA (mRNA) levels, suggests that renal IGF-I accumulation is due to sequestration of circulating IGF-I rather than to local synthesis. It has been suggested that IGF-I is trapped in the kidney by IGF binding protein 1 (IGFBP-1). We administered purified human IGFBP-1 (hIGFBP-1) to nondiabetic and diabetic mice as three daily sc injections for 14 days, starting 6 days after induction of streptozotocin diabetes when the animals were overtly diabetic. Markers of early diabetic renal changes (i.e., increased kidney weight, glomerular volume, and albuminuria) coincided with accumulation of renal cortical IGF-I despite decreased mRNA levels in 20-day diabetic mice. Human IGFBP-1 administration had no effect on increased kidney weight or albuminuria in early diabetes, although it abolished renal cortical IGF-I accumulation and glomerular hypertrophy in diabetic mice. Increased IGF-I levels in kidneys of normal mice receiving hIGFBP-1 were not reflected on kidney parameters. IGFBP-1 administration in diabetic mice had only minor effects on diabetic renal changes. Accordingly, these results did not support the hypothesis that IGFBP-1 plays a major role in early renal changes in diabetes

    Interpolated kilonova spectra models: necessity for a phenomenological, blue component in the fitting of AT2017gfo spectra

    Full text link
    In this work, we present a simple interpolation methodology for spectroscopic time series, based on conventional interpolation techniques (random forests) implemented in widely-available libraries. We demonstrate that our existing library of simulations is sufficient for training, producing interpolated spectra that respond sensitively to varied ejecta parameter, post-merger time, and viewing angle inputs. We compare our interpolated spectra to the AT2017gfo spectral data, and find parameters similar to our previous inferences using broadband light curves. However, the spectral observations have significant systematic short-wavelength residuals relative to our models, which we cannot explain within our existing framework. Similar to previous studies, we argue that an additional blue component is required. We consider a radioactive heating source as a third component characterized by light, slow-moving, lanthanide-free ejecta with Mth=0.003 MM_{\rm th} = 0.003~M_\odot, vth=0.05v_{\rm th} = 0.05c, and κth=1\kappa_{\rm th} = 1 cm2^2/g. When included as part of our radiative transfer simulations, our choice of third component reprocesses blue photons into lower energies, having the opposite effect and further accentuating the blue-underluminosity disparity in our simulations. As such, we are unable to overcome short-wavelength deficits at later times using an additional radioactive heating component, indicating the need for a more sophisticated modeling treatment.Comment: 11 pages, 7 figures, presenting at April APS session F13.0000

    Development of a modular test system for the silicon sensor R&D of the ATLAS Upgrade

    Get PDF
    High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. It currently includes five custom designed boards, a Xilinx ZC706 development board, FELIX (Front-End LInk eXchange) PCIe card and a host computer. A software program has been developed in Python to control the CaRIBOu hardware. CaRIBOu has been used in the testbeam of the HV-CMOS sensor AMS180v4 at CERN. Preliminary results have shown that the test system is very versatile. Further development is ongoing to adapt to different sensors, and to make it available to various lab test stands

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore