7 research outputs found

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities

    Handling of ferric iron by branchial and intestinal epithelia of climbing perch (<i style="">Anabas testudineus</i> Bloch)

    No full text
    896-900With a view to test how the branchial and intestinal tissues of fish, the two sites of metal acquisition, utilize the water-borne ferric [Fe(III)] iron and whether the accumulation of this form of iron influences cellular Na/K gradient in these tissues, the gills and intestines of climbing perch adapted to freshwater (FW) and acclimated to dilute seawater (20 ppt; SW) were analyzed for ouabain-sensitive Na+, K+-ATPase activity, Fe and electrolyte contents after loading a low (8.95 µM) or high dose (89.5 µM) of Fe(III) iron in the water. The SW gills showed higher levels of total Fe after treating with 8.95 µM of Fe(III) iron which was not seen in the FW gills. Na+, K+-ATPase activity, reflecting Na/K pump activity, showed an increase in the FW gills and not in the SW gills. Substantial increase in the branchial Na and K content was observed in the SW gills, but the FW gills failed to show such effects after Fe(III) loading. The total Fe content was declined in the FW intestine but not in the SW intestine. Water-borne Fe(III) iron decreased the activity of Na+, K+-ATPase in the SW intestine while not changing its activity in the FW intestine. The Na and K content in the FW intestine did not respond to Fe(III) iron exposure but showed a reduction in its Na levels in the SW intestine. The moisture content in the gills and intestines of both the FW and SW perch remained unaffected after Fe(III) loading. In FW fish, the plasma Na levels were decreased by a low dose of Fe(III) iron, though a high dose of Fe(III) iron was required in the SW fish for such an effect. Overall, the results for the first time provide evidence that gills act as a major site for Fe(III) iron absorption and accumulation during salinity acclimation which depends on a high cellular Na/K gradient

    Pendulum Study: Active Visual Tracking Elicits Non-Selective Elevations in Cerebral Blood Flow

    No full text
    Neurovascular coupling (NVC) describes the effective matching of cerebral blood flow (CBF) to regions of neuro-metabolic demand. There is increasing interest to assess human NVC for both basic research and its potential role in vascular-cognitive impairment. The clinical utility of NVC relies on a standardized protocol for which the driving metabolic demands are highly-selective. Various research groups deploy divergent strategies to elicit visual NVC responses, including inactive processes (visual grating), passive visual tracking (target with predictable motion) and active visual tracking (target with unpredictable motion). These strategies differ in degree of cognitive and metabolic demand and may elicit different NVC responses, thus precluding study comparison. The present NVC assessment evaluated temporal and regional responsiveness of blood flow (transcranial Doppler) to the visual cortex [via the posterior cerebral artery (PCA)] and blood pressure (Finapres NOVA) during visual stimulation in 19 healthy subjects while also measuring middle cerebral artery (MCA) blood flow. Visual stimulation included 10 cycles of 30 seconds with eyes closed, followed by 30 seconds with eyes open tracking a moving computerized target. Each subject completed three trials of passive tracking and three trials of active tracking (114 NVC protocols, 1140 individual hyperemias). A custom eye-scanning apparatus followed eye motion to quantify visual target-tracking vigilance. Additional custom software was used to quantify NVC. The data demonstrated that active tracking elicited greater NVC responses compared to passive tracking. Specifically, there was 26% greater change in the mean elevation of PCA blood velocity (p=<0.000) and 13% greater peak NVC response (p<0.01). The MCA response was also greater during active tracking (mean response 111% greater, peak response 41% greater; both p<0.001). Visual target-tracking vigilance was linearly correlated to the degree of hyperemia in the MCA and PCA, as well blood pressure during NVC. It was observed that active and passive visual tracking elicit different NVC responses and cannot be reliably compared. That PCA and MCA responses were greater with active tracking suggests an elevated global CBF (i.e. not selective to regions perfused by the PCA) that may result from recruitment of brain centres responsible for sustained attention and executive function. In other words, active tracking leads to non-selective elevations in global CBF and greater target-tracking vigilance impacts the NVC response. These findings are a critical step to better understand and standardize the evaluation of NVC in humans and for potential clinical deployment of NVC assessments
    corecore