117 research outputs found

    Qualification of Indigenously Developed Special Coatings for Aero-Engine Components

    Get PDF
    The demand for higher performance and reliability of aero-engiaes necessitates its components to worksatisfactorily under severe operating conditions. The durability of various components in these environmentis often enhanced by applying suitable coatings. The development of new materials/processing methods andalso various coatings to protect the components have been driven by the ever-increasing severity of theaero-engine internal environment. While the selection of a coating is dictated by the operating conditionsand the nature of the environment and also on the substrate, the durability of the coating depends uponthe mode of degradation of the coating and substrate in service.Though certification of an aero-engine after developmt obviously includes: validation of the componentsand its coatings, indigenous substitution of an already-qualified component system requires a re-orientationof the qualification methodology. This paper describes an approach for qualification of indigenously developedspecial coatings processes for application on aero-engine components. This approach has been adoptedsuccesshlly in validating several indigenous coatingslpmcesses, viz, aluminium-silicon diffusion coating appliedby pack cementation for oxidationhot comsion resistance, cobalt-chromium carbide coating by electrodepositionfor wear resistance, chromium carbide-nickel chromium coating applied by detonation gun and yttria-stabilisedzirconia thermal barrier coating applied by plasma spray.The approaih consists of a series of validation tests configured to assess the coating-substrate system.The rationale in evolving the qualification tests based on the type of coating, coating process, operating conditionsfor the components, probable failure modes and coating-base metal interaction, are described. In addition,comparison of the test results obtained on the test specimens coated with indigenously developed coatingsand imported coatings is also enumerated to show that these coatings are comparable to the imported coatings.Documentation of satisfactory performance of the components coated with indigenously developed coatingsthrough successful engine tests and limited-service evaluation is also highlighted. In addition to the substitutionof the coatings recommended by the principal designers with those developed indigenously, a few coatings,such as polyimide coating for corrosion resistance and ceramic paint for thermal resistance solely appliedon various aero-engine components were successfully evaluated using above mentioned approach

    Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity

    Get PDF
    Local translation meets protein turnover and plasticity demands at synapses, however, the location of its energy supply is unknown. We found that local translation in neurons is powered by mitochondria and not by glycolysis. Super-resolution microscopy revealed that dendritic mitochondria exist as stable compartments of single or multiple filaments. To test if these mitochondrial compartments can serve as local energy supply for synaptic translation, we stimulated individual synapses to induce morphological plasticity and visualized newly synthesized proteins. Depletion of local mitochondrial compartments abolished both the plasticity and the stimulus-induced synaptic translation. These mitochondrial compartments serve as spatially confined energy reserves, as local depletion of a mitochondrial compartment did not affect synaptic translation at remote spines. The length and stability of dendritic mitochondrial compartments and the spatial functional domain were altered by cytoskeletal disruption. These results indicate that cytoskeletally tethered local energy compartments exist in dendrites to fuel local translation during synaptic plasticity

    A genetically encodable cell-type-specific protein synthesis inhibitor

    Get PDF
    Chemical inhibitors have revealed requirements for protein synthesis that drive cellular plasticity. We developed a genetically encodable protein synthesis inhibitor (gePSI) to achieve cell-type-specific temporal control of protein synthesis. Controlled expression of the gePSI in neurons or glia resulted in rapid, potent and reversible cell-autonomous inhibition of protein synthesis. Moreover, gePSI expression in a single neuron blocked the structural plasticity induced by single-synapse stimulation

    Cerebrovascular events and outcomes in hospitalized patients with COVID-19: The SVIN COVID-19 Multinational Registry

    Get PDF
    © 2020 World Stroke Organization.[Background]: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has been associated with a significant risk of thrombotic events in critically ill patients. [Aim]: To summarize the findings of a multinational observational cohort of patients with SARS-CoV-2 and cerebrovascular disease. [Methods]: Retrospective observational cohort of consecutive adults evaluated in the emergency department and/or admitted with coronavirus disease 2019 (COVID-19) across 31 hospitals in four countries (1 February 2020–16 June 2020). The primary outcome was the incidence rate of cerebrovascular events, inclusive of acute ischemic stroke, intracranial hemorrhages (ICH), and cortical vein and/or sinus thrombosis (CVST). [Results]: Of the 14,483 patients with laboratory-confirmed SARS-CoV-2, 172 were diagnosed with an acute cerebrovascular event (1.13% of cohort; 1130/100,000 patients, 95%CI 970–1320/100,000), 68/171 (40.5%) were female and 96/172 (55.8%) were between the ages 60 and 79 years. Of these, 156 had acute ischemic stroke (1.08%; 1080/100,000 95%CI 920–1260/100,000), 28 ICH (0.19%; 190/100,000 95%CI 130–280/100,000), and 3 with CVST (0.02%; 20/100,000, 95%CI 4–60/100,000). The in-hospital mortality rate for SARS-CoV-2-associated stroke was 38.1% and for ICH 58.3%. After adjusting for clustering by site and age, baseline stroke severity, and all predictors of in-hospital mortality found in univariate regression (p < 0.1: male sex, tobacco use, arrival by emergency medical services, lower platelet and lymphocyte counts, and intracranial occlusion), cryptogenic stroke mechanism (aOR 5.01, 95%CI 1.63–15.44, p < 0.01), older age (aOR 1.78, 95%CI 1.07–2.94, p ¼ 0.03), and lower lymphocyte count on admission (aOR 0.58, 95%CI 0.34–0.98, p ¼ 0.04) were the only independent predictors of mortality among patients with stroke and COVID-19. [Conclusions]: COVID-19 is associated with a small but significant risk of clinically relevant cerebrovascular events, particularly ischemic stroke. The mortality rate is high for COVID-19-associated cerebrovascular complications; therefore, aggressive monitoring and early intervention should be pursued to mitigate poor outcomes

    Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans

    Get PDF
    Substantial evidence implicates the nucleus accumbens in motivated performance, but very little is known about the neurochemical underpinnings of individual differences in motivation. Here, we applied 1H magnetic resonance spectroscopy (1H-MRS) at ultra-high-field in the nucleus accumbens and inquired whether levels of glutamate (Glu), glutamine (Gln), GABA or their ratios predict interindividual differences in effort-based motivated task performance. Given the incentive value of social competition, we also examined differences in performance under self-motivated or competition settings. Our results indicate that higher accumbal Gln-to-Glu ratio predicts better overall performance and reduced effort perception. As performance is the outcome of multiple cognitive, motor and physiological processes, we applied computational modeling to estimate best-fitting individual parameters related to specific processes modeled with utility, effort and performance functions. This model-based analysis revealed that accumbal Gln-to-Glu ratio specifically relates to stamina; i.e., the capacity to maintain performance over long periods. It also indicated that competition boosts performance from task onset, particularly for low Gln-to-Glu individuals. In conclusion, our findings provide novel insights implicating accumbal Gln and Glu balance on the prediction of specific computational components of motivated performance. This approach and findings can help developing therapeutic strategies based on targeting metabolism to ameliorate deficits in effort engagement

    The Antibody Targeting the E314 Peptide of Human Kv1.3 Pore Region Serves as a Novel, Potent and Specific Channel Blocker

    Get PDF
    Selective blockade of Kv1.3 channels in effector memory T (TEM) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca2+ or voltage-gated Na+ currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related Kv1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous systerm (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker

    Failure of IN-100 Alloy High Pressure Turbine Blades

    Get PDF
    High, pressure turbine blades developed cracks near the shroud on the leading edge, within one hour of run on the test bed. The blades had a chromal surface coating. The coating was severely cracked. The failure of the blades was due to fatigue initiated by the crack in the surface coating

    Failure of Bolts in a Radar Antenna System Reflector Joint

    Get PDF
    Failure of high tensile steel bolts used in a Radar antenna system reflector joint was analysed. They had cracked at the fillet head inside an alien key socket due to improper seating. Cracking was aggravated by the presence of hydrogen. in the material introduced during cadmium plating
    corecore