36 research outputs found

    Comparison of fungal carbohydrate esterases of family CE16 on artificial and natural substrates

    No full text
    Slovak Research and Development Agency APVV 0602 12 Scientific Grant Agency 2/0037/14 Research & Development Operation Programme - European Regional Development Fund ITMS 26220120054 SP Grant 20035P200280203 Norwegian Research Council, JA 214613 244259International audienceThe enzymatic conversion of acetylated hardwood glucuronoxylan to functional food oligomers, biochemicals or fermentable monomers requires besides glycoside hydrolases enzymes liberating acetic acid esterifying position 2 and/or 3 in xylopyranosyl (Xylp) residues. The 3-O-acetyl group at internal Xylp residues substituted by MeGlcA is the only acetyl group of hardwood acetylglucuronoxylan and its fragments not attacked by acetylxylan esterases of carbohydrate esterase (CE) families 1, 4, 5 and 6 and by hemicellulolytic acetyl esterases classified in CE family 16. Monoacetylated aldotetraouronic acid 3″-Ac(3)MeGlcA(3)Xyl3, generated from the polysaccharide by GH10 endoxylanases, appears to be one of the most resistant fragments. The presence of the two substituents on the non-reducing-end Xylp residue prevents liberation of MeGlcA by α-glucuronidase of family GH67 and blocks the action of acetylxylan esterases. The Ac(3)MeGlcA(3)Xyl3 was isolated from an enzymatic hydrolysate of birchwood acetylglucuronoxylan and characterized by (1)H NMR spectroscopy as a mixture of two positional isomers, 3″-Ac(3)MeGlcA(3)Xyl3 and 4″-Ac(3)MeGlcA(3)Xyl3, the latter being the result of acetyl group migration. The mixture was used as a substrate for three members of CE16 family of fungal origin. Trichoderma reesei CE16 esterase, inactive on polymeric substrate, deacetylated both isomers. Podospora anserina and Aspergillus niger esterases, active on acetylglucuronoxylan, deesterified effectively only the 4″-isomer. The results indicate catalytic diversity among CE16 enzymes, but also their common and unifying catalytic ability to exo-deacetylate positions 3 and 4 on non-reducing-end Xylp residues, which is an important step in plant hemicellulose saccharificatio

    Purification and characterization of two forms of endo-beta-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749)

    No full text
    Two extracellular endo-β-1,4-mannanases, MAN I (major form) and MAN II (minor form), were purified to electrophoretic homogeneity from a locust bean gum-spent culture fluid of Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Molecular weights of MAN I and MAN II estimated by SDS-PAGE were 60 and 63 kDa, respectively. IEF afforded several glycoprotein bands with pI values in the range of 4.9–5.2 for MAN I and 4.75–4.9 for MAN II, each exhibiting enzyme activity. MAN I as well as MAN II showed highest activity at pH 4.5 and 60 °C and were stable in the pH range 4.5–8.5 and up to 55 °C. In accordance with the ability of the enzymes to catalyze transglycosylation reactions, 1H NMR spectroscopy of reaction products generated from mannopentaitol confirmed the retaining character of both enzymes. Both MAN I and MAN II exhibited essentially identical kinetic parameters for polysaccharides and a similar hydrolysis pattern of various oligomeric and polymeric substrates. Both β-mannanases contained identical internal amino acid sequence corresponding to glycoside hydrolase family 5 and also a cellulose-binding module. These data suggested that both MAN I and MAN II are products of the same gene differing in posttranslational modification. Indeed, the corresponding gene was identified within the recently sequenced Aspergillus fumigatus genome (http://www.sanger.ac.uk/Projects/A_fumigatus/)

    Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases

    No full text
    The enzymatic degradation of plant cell wall xylan requires the concerted action of a diverse enzymatic syndicate. Among these enzymes are xylan esterases, which hydrolyze the O-acetyl substituents, primarily at the O-2 position of the xylan backbone. All acetylxylan esterase structures described previously display a alpha/beta hydrolase fold with a "Ser-His-Asp" catalytic triad. Here we report the structures of two distinct acetylxylan esterases, those from Streptomyces lividans and Clostridium thermocellum, in native and complex forms, with x-ray data to between 1.6 and 1.0 angstrom resolution. We show, using a novel linked assay system with PNP-2-O-acetyl-xyloside and a beta-xylosidase, that the enzymes are sugar-specific and metal ion-dependent and possess a single metal center with a chemical preference for Co2+. Asp and His side chains complete the catalytic machinery. Different metal ion preferences for the two enzymes may reflect the surprising diversity with which the metal ion coordinates residues and ligands in the active center environment of the S. lividans and C. thermocellum enzymes. These "CE4" esterases involved in plant cell wall degradation are shown to be closely related to the de-N-acetylases involved in chitin and peptidoglycan degradation (Blair, D. E., Schuettelkopf, A. W., MacRae, J.I., and Aalten, D. M. (2005) Proc. Natl. Acad. Sci. U.S.A., 102, 15429-15434), which form the NodB deacetylase "superfamily."</p

    Contro le ragioni basate su desideri

    No full text
    The enzymatic degradation of plant cell wall xylan requires the concerted action of a diverse enzymatic syndicate. Among these enzymes are xylan esterases, which hydrolyze the O-acetyl substituents, primarily at the O-2 position of the xylan backbone. All acetylxylan esterase structures described previously display a alpha/beta hydrolase fold with a "Ser-His-Asp" catalytic triad. Here we report the structures of two distinct acetylxylan esterases, those from Streptomyces lividans and Clostridium thermocellum, in native and complex forms, with x-ray data to between 1.6 and 1.0 A resolution. We show, using a novel linked assay system with PNP-2-O-acetylxyloside and a beta-xylosidase, that the enzymes are sugar-specific and metal ion-dependent and possess a single metal center with a chemical preference for Co2+. Asp and His side chains complete the catalytic machinery. Different metal ion preferences for the two enzymes may reflect the surprising diversity with which the metal ion coordinates residues and ligands in the active center environment of the S. lividans and C. thermocellum enzymes. These "CE4" esterases involved in plant cell wall degradation are shown to be closely related to the de-N-acetylases involved in chitin and peptidoglycan degradation (Blair, D. E., Schuettelkopf, A. W., MacRae, J. I., and Aalten, D. M. (2005) Proc. Natl. Acad. Sci. U. S. A., 102, 15429-15434), which form the NodB deacetylase "superfamily.
    corecore