1,888 research outputs found

    Balancing the Tradeoff between Profit and Fairness in Rideshare Platforms During High-Demand Hours

    No full text
    Rideshare platforms, when assigning requests to drivers, tend to maximize profit for the system and/or minimize waiting time for riders. Such platforms can exacerbate biases that drivers may have over certain types of requests. We consider the case of peak hours when the demand for rides is more than the supply of drivers. Drivers are well aware of their advantage during the peak hours and can choose to be selective about which rides to accept. Moreover, if in such a scenario, the assignment of requests to drivers (by the platform) is made only to maximize profit and/or minimize wait time for riders, requests of a certain type (e.g. from a non-popular pickup location, or to a non-popular drop-off location) might never be assigned to a driver. Such a system can be highly unfair to riders. However, increasing fairness might come at a cost of the overall profit made by the rideshare platform. To balance these conflicting goals, we present a flexible, non-adaptive algorithm, \lpalg, that allows the platform designer to control the profit and fairness of the system via parameters α\alpha and β\beta respectively. We model the matching problem as an online bipartite matching where the set of drivers is offline and requests arrive online. Upon the arrival of a request, we use \lpalg to assign it to a driver (the driver might then choose to accept or reject it) or reject the request. We formalize the measures of profit and fairness in our setting and show that by using \lpalg, the competitive ratios for profit and fairness measures would be no worse than α/e\alpha/e and β/e\beta/e respectively. Extensive experimental results on both real-world and synthetic datasets confirm the validity of our theoretical lower bounds. Additionally, they show that \lpalg under some choice of (α,β)(\alpha, \beta) can beat two natural heuristics, Greedy and Uniform, on \emph{both} fairness and profit

    Crisis in Legal Education and the Legal Profession - A Response

    Get PDF

    Selected legal and institutional issues related to Ocean Thermal Energy Conversion (OTEC) development

    Get PDF
    Ocean Thermal Energy Conversion (OTEC), an attractive alternative to traditional energy sources, is still in the early stages of development. To facilitate OTEC commercialization, it is essential that a legal and institutional framework be designed now so as to resolve uncertainties related to OTEC development, primarily involving jurisdictional, regulatory, and environmental issues. The jurisdictional issues raised by OTEC use are dependent upon the site of an OTEC facility and its configuration; i.e., whether the plant is a semipermanent fixture located offshore or a migrating plant ship that provides a source of energy for industry at sea. These issues primarily involve the division of authority between the Federal Government and the individual coastal states. The regulatory issues raised are largely speculative: they involve the adaptation of existing mechanisms to OTEC operation. Finally, the environmental issues raised center around compliance with the National Environmental Policy Act (NEPA) as well as international agreements. 288 references

    Ising Ferromagnet: Zero-Temperature Dynamic Evolution

    Get PDF
    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of ``Chaotic Time Dependence'' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit.Comment: 14 pages, Latex with 8 EPS figure

    Inverse Correlation between Insulin‑like Growth Factor‑1 and Leptin Levels in Preeclampsia

    Get PDF
    Background: Preeclampsia is the major cause of maternofetal and neonatal morbidity and mortality. Insulin‑like growth factor (IGF) system has a crucial role in correct embryonic and placental development and growth. Conflicting data are available regarding IGF‑1 in preeclamptic mothers. The extent to which leptin per se mediates the fetal growth and developmental abnormalities associated with preeclampsia remains to be clarified.Aim: Hence, the present study was planned to assess IGF‑1 and leptin levels in maternal and cord blood of preeclamptics and to compare them with normotensive pregnant women.Subjects and Methods: The present study was conducted in the Department of Biochemistry in collaboration with the Department of Obstetrics and Gynaecology, Pt. B.D. Sharma, PGIMS, Rohtak. Totally, 25 normotensive pregnant and 25 preeclamptic women were enrolled, and serum leptin and IGF‑1 levels were analyzed in maternal and cord blood of women by enzyme‑linked immunosorbent assay.Results: IGF‑I levels were lowered in maternal blood of preeclamptic as compared to normotensive mothers (P < 0.001). Leptin levels were significantly increased in preeclamptic mothers as compared to normotensive mothers (P < 0.001). Leptin had a positive correlation with IGF in both groups and it is highly statistically significant in preeclamptic mothers. Conclusion: Findings of the present study suggest that IGF‑1 and leptin play a central role in controlling fetal growth.KEY WORDS: Cord blood, insulin‑like growth factor‑1, leptin, preeclamptics, pregnanc

    A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Full text link
    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3_{3} crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~ÎĽ\muA.Comment: 20 pages, 22 figures, revised version of arXiv:1601.00251v1, submitted to NIM

    Structural and magnetic properties of the (001) and (111) surfaces of the half-metal NiMnSb

    Full text link
    Using the full potential linearised augmented planewave method we study the electronic and magnetic properties of the (001) and (111) surfaces of the half-metallic Heusler alloy NiMnSb from first-principles. We take into account all possible surface terminations including relaxations of these surfaces. Special attention is paid to the spin-polarization at the Fermi level which governs the spin-injection from such a metal into a semiconductor. In general, these surfaces lose the half-metallic character of the bulk NiMnSb, but for the (111) surfaces this loss is more pronounced. Although structural optimization does not change these features qualitatively, specifically for the (111) surfaces relaxations can compensate much of the spin-polarization at the Fermi surface that has been lost upon formation of the surface.Comment: 18 pages, 8 figure

    An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes

    Get PDF
    We obtain an effective parametrization of the bulk electronic structure of InP within the Tight Binding scheme. Using these parameters, we calculate the electronic structure of InP clusters with the size ranging upto 7.5 nm. The calculated variations in the electronic structure as a function of the cluster size is found to be in excellent agreement with experimental results over the entire range of sizes, establishing the effectiveness and transferability of the obtained parameter strengths.Comment: 9 pages, 3 figures, pdf file available at http://sscu.iisc.ernet.in/~sampan/publications.htm
    • …
    corecore