1,005 research outputs found

    Extended Gaussian ensemble or q-statistics in hadronic production processes?

    Full text link
    The extended Gaussian ensemble introduced recently as a generalization of the canonical ensemble, which allows to treat energy fluctuations present in the system, is used to analyze the inelasticity distributions in high energy multiparticle production processes.Comment: Presented at NEXT2005 (News, Expectations and Trends in Statistical Physics, NEXT-SigmaPhi 3rd International Conference) 13-18 August 2005, Kolymbari CRETE, minor corrections, to be published in Europ. Phys. J. B (2006

    Diffusion approximation for equilibrium Kawasaki dynamics in continuum

    Get PDF
    A Kawasaki dynamics in continuum is a dynamics of an infinite system of interacting particles in Rd\mathbb R^d which randomly hop over the space. In this paper, we deal with an equilibrium Kawasaki dynamics which has a Gibbs measure ÎŒ\mu as invariant measure. We study a diffusive limit of such a dynamics, derived through a scaling of both the jump rate and time. Under weak assumptions on the potential of pair interaction, ϕ\phi, (in particular, admitting a singularity of ϕ\phi at zero), we prove that, on a set of smooth local functions, the generator of the scaled dynamics converges to the generator of the gradient stochastic dynamics. If the set on which the generators converge is a core for the diffusion generator, the latter result implies the weak convergence of finite-dimensional distributions of the corresponding equilibrium processes. In particular, if the potential ϕ\phi is from Cb3(Rd)C_{\mathrm b}^3(\mathbb R^d) and sufficiently quickly converges to zero at infinity, we conclude the convergence of the processes from a result in [Choi {\it et al.}, J. Math. Phys. 39 (1998) 6509--6536]

    Analysis of Bose-Einstein correlations in e+e- -> W+W- events including final state interactions

    Get PDF
    Recently DELPHI Collaboration reported new data on Bose-Einstein correlations (BEC) measured in e+e- -> W^+W^- events. Apparently no enhancement has been observed. We have analyzed these data including final state interactions (FSI) of both Coulomb and strong (s-wave) origin and found that there is enhancement in BEC but it is overshadowed by the FSI which are extremely important for those events. We have found the following values for the size of the interaction range beta and the degree of coherence lambda: beta=0.87 +/- 0.31fm and lambda=1.19 +/- 0.48, respectively.Comment: 7pages, 4 figure

    Sensitivity of the interlayer magnetoresistance of layered metals to intralayer anisotropies

    Get PDF
    Many of the most interesting and technologically important electronic materials discovered in the past two decades have two common features: a layered crystal structure and strong interactions between electrons. Two of the most fundamental questions about such layered metals concern the origin of intralayer anisotropies and the coherence of interlayer charge transport. We show that angle dependent magnetoresistance oscillations (AMRO) are sensitive to anisotropies around an intralayer Fermi surface. Hence, AMRO can be a probe of intralayer anisotropies that is complementary to angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). However, AMRO are not very sensitive to the coherence of the interlayer transport. We illustrate this with comparisons to recent AMRO experiments on an overdoped cuprate.Comment: 7 pages, 3 figure

    The Bose-Einstein distribution functions and the multiparticle production at high energies

    Get PDF
    The evolution properties of propagating particles produced at high energies in a randomly distributed environment are studied. The finite size of the phase space of the multiparticle production region as well as the chaoticity can be derived.Comment: 18 pages, LaTeX, no figures, no table

    The Fractal Properties of the Source and BEC

    Get PDF
    Using simple space-time implementation of the random cascade model we investigate numerically influence of the possible fractal structure of the emitting source on Bose-Einstein correlations between identical particles. The results are then discussed in terms of the non-extensive Tsallis statistics.Comment: LaTeX file and 2 PS files with figures, 8 pages altogether. Talk presented at the 12th Indian Summer School "Relativistic Heavy Ion Physics, Prague, Czech Republic, 30 August-3 Sept. 1999; to be published in Czech J. Phys. (1999). Some typos correcte

    Magic angle effects of the one-dimensional axis conductivity in quasi-one dimensional conductors

    Full text link
    In quasi-one-dimensional conductors, the conductivity in both one-dimensional axis and interchain direction shows peaks when magnetic field is tilted at the magic angles in the plane perpendicular to the conducting chain. Although there are several theoretical studies to explain the magic angle effect, no satisfactory explanation, especially for the one-dimensional conductivity, has been obtained. We present a new theory of the magic angle effect in the one-dimensional conductivity by taking account of the momentum-dependence of the Fermi velocity, which should be large in the systems close to a spin density wave instability. The magic angle effect is explained in the semiclassical equations of motion, but neither the large corrugation of the Fermi surface due to long-range hoppings nor hot spots, where the relaxation time is small, on the Fermi surface are required.Comment: 4 pages, 3 figure

    Highly anisotropic interlayer magnetoresistance in ZrSiS nodal-line Dirac semimetal

    Full text link
    We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not well understood. Our measurements of the polar out-of-plane AMR show a surprisingly different response with a pronounced cusp-like feature. The maximum of the cusp-like anisotropy is reached when the magnetic field is oriented in the aa-bb plane. Moreover, the AMR for the azimuthal out-of-plane current direction exhibits a very strong four-fold aa-bb plane anisotropy. Combining the Fermi surfaces calculated from first principles with the Boltzmann's semiclassical transport theory we reproduce and explain all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR. We are also able to clarify the origin of the strong non-saturating transverse magnetoresistance as an effect of imperfect charge-carrier compensation and open orbits. Finally, by combining our theoretical model and experimental data we estimate the average relaxation time of 2.6×10−142.6\times10^{-14}~s and the mean free path of 1515~nm at 1.8~K in our samples of ZrSiS.Comment: 8 pages, 4 figure

    Prenylcysteine oxidase 1, a pro-oxidant enzyme of low density lipoproteins

    Get PDF
    Elevated levels of low density lipoproteins (LDLs) cause atherosclerotic disease, and proteomic analyses have found that these lipoproteins are endowed with prenylcysteine lyase. This systematic review summarizes current understanding of this enzyme, now known as prenylcysteine oxidase 1 (PCYOX1), which hydrolyzes the thioether bond of prenylcysteines in the nal step in the degradation of prenylated proteins, releasing hydrogen peroxide, cysteine and the isoprenoid aldehyde. Despite the high variability of the PCYOX1 gene, no polymorphism has yet been associated with any disease. The liver, which is responsible for vehiculization of the enzyme in lipoproteins, is one of the main organs responsible for its expression, together with the gastrointestinal tract, kidney, male reproductive tissue and muscle. Moreover, although hepatic mRNA expression is sensitive to diet and hormones, the repercussion of these changes in LDLs containing PCYOX1 has not been addressed. One consequence of its elevated activity could be an increase in hydrogen peroxide, which might help to propagate the oxidative burden of LDLs, thus making PCYOX1 a potential pharmacological target and a new biomarker in cardiovascular disease
    • 

    corecore