157 research outputs found
Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in wastewater with sale, seizure and consumption data for 8 European cities
Background: Monitoring the scale of pharmaceuticals, illicit and licit drugs consumption is important to assess the needs of law enforcement and public health, and provides more information about the different trends within different countries. Community drug use patterns are usually described by national surveys, sales and seizure data. Wastewater-based epidemiology (WBE) has been shown to be a reliable approach complementing such surveys.
Method: This study aims to compare and correlate the consumption estimates of pharmaceuticals, illicit drugs, alcohol, nicotine and caffeine from wastewater analysis and other sources of information. Wastewater samples were collected in 2015 from 8 different European cities over a one week period, representing a population of approximately 5 million people. Published pharmaceutical sale, illicit drug seizure and alcohol, tobacco and caffeine use data were used for the comparison.
Results: High agreement was found between wastewater and other data sources for pharmaceuticals and cocaine, whereas amphetamines, alcohol and caffeine showed a moderate correlation. methamphetamine and 3,4- methylenedioxymethamphetamine (MDMA) and nicotine did not correlate with other sources of data. Most of the poor correlations were explained as part of the uncertainties related with the use estimates and were improved with other complementary sources of data.
Conclusions: This work confirms the promising future of WBE as a complementary approach to obtain a more accurate picture of substance use situation within different communities. Our findings suggest further improvements to reduce the uncertainties associated with both sources of information in order to make the data more comparable.Jose Antonio Baz Lomba, Stefania Salvatore, Richard Bade, Erika Castrignanò, Ana Causanilles, Juliet Kinyua, Ann-Kathrin McCall, Pedram Ramin, Nikolaos I. Rousis, and Yeonsuk Ryu acknowledge the EU Marie-Skłodowska Curie Initial Training Network SEWPROF (Marie Curie-FP7-PEOPLE, grant number 317205) for their Early Stage Researcher grant and Emma Gracia-Lor for her Experienced Researcher grant. We thank the people and agencies who assisted in the collection of the wastewater samples, in particular Pia Ryrfors and colleagues at Vestfjorden Avløpselskap (VEAS, Oslo, Norway)
Enantiomeric profiling of chiral illicit drugs in a pan-European study
The aim of this paper is to present the first study on spatial and temporal variation in the enantiomeric profile of chiral drugs in eight European cities. Wastewater-based epidemiology (WBE) and enantioselective analysis were combined to evaluate trends in illicit drug use in the context of their consumption vs direct disposal as well as their synthetic production routes. Spatial variations in amphetamine loads were observed with higher use in Northern European cities. Enantioselective analysis showed a general enrichment of amphetamine with the R-(−)-enantiomer in wastewater indicating its abuse. High loads of racemic methamphetamine were detected in Oslo (EF = 0.49 ± 0.02). This is in contrast to other European cities where S-(+)-methamphetamine was the predominant enantiomer. This indicates different methods of methamphetamine synthesis and/or trafficking routes in Oslo, compared with the other cities tested. An enrichment of MDMA with the R-(−)-enantiomer was observed in European wastewaters indicating MDMA consumption rather than disposal of unused drug. MDA's chiral signature indicated its enrichment with the S-(+)-enantiomer, which confirms its origin from MDMA metabolism in humans. HMMA was also detected at quantifiable concentrations in wastewater and was found to be a suitable biomarker for MDMA consumption. Mephedrone was only detected in wastewater from the United Kingdom with population-normalised loads up to 47.7 mg 1000 people−1 day−1. The enrichment of mephedrone in the R-(+)-enantiomer in wastewater suggests stereoselective metabolism in humans, hence consumption, rather than direct disposal of the drug. The investigation of drug precursors, such as ephedrine, showed that their presence was reasonably ascribed to their medical use
Pharmacokinetics-Based Pediatric Dose Evaluation and Optimization Using Saliva - A Case Study.
Understanding pharmacokinetics (PK) in children is a prerequisite to determine optimal pediatric dosing. As plasma sampling in children is challenging, alternative PK sampling strategies are needed. In this case study we evaluated the suitability of saliva as alternative PK matrix to simplify studies in infants, investigating metamizole, an analgesic used off-label in infants. Six plasma and 6 saliva PK sample collections were scheduled after a single intravenous dose of 10 mg/kg metamizole. Plasma/saliva pharmacometric (PMX) modeling of the active metabolites 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA) was performed. Various reduced plasma sampling scenarios were evaluated by PMX simulations. Saliva and plasma samples from 25 children were included (age range, 5-70 months; weight range, 8.7-24.8 kg). Distribution of metamizole metabolites between plasma and saliva was without delay. Estimated mean (individual range) saliva/plasma fractions of 4-MAA and 4-AA were 0.32 (0.05-0.57) and 0.57 (0.25-0.70), respectively. Residual variability of 4-MAA (4-AA) in saliva was 47% (28%) versus 17% (11%) in plasma. A simplified sampling scenario with up to 6 saliva samples combined with 1 plasma sample was associated with similar PK parameter estimates as the full plasma sampling scenario. This case study with metamizole shows increased PK variability in saliva compared to plasma, compromising its suitability as single matrix for PK studies in infants. Nonetheless, rich saliva sampling can reduce the number of plasma samples required for PK characterization, thereby facilitating the conduct of PK studies to optimize dosing in pediatric patients
Evidence for a Fourteenth mtDNA-Encoded Protein in the Female-Transmitted mtDNA of Marine Mussels (Bivalvia: Mytilidae)
BACKGROUND: A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. CONCLUSIONS/SIGNIFICANCE: Our results offer support for the hypothesis that "novel F genome-specific mitochondrial genes" are involved in key biological functions in bivalve species with DUI
- …