1,042 research outputs found

    Uniqueness for a seismic inverse source problem modeling a subsonic rupture

    Get PDF
    We consider an inverse problem for an inhomogeneous wave equation with discrete-in-time sources, modeling a seismic rupture. We assume that the sources occur along a path with subsonic velocity, and that data are collected over time on some detection surface. We explore the question of uniqueness for these problems, show how to recover the times and locations of sources microlocally, and then reconstruct the smooth part of the source assuming that it is the same at each source location

    Magnetic nanocomposites at microwave frequencies

    Full text link
    Most conventional magnetic materials used in the electronic devices are ferrites, which are composed of micrometer-size grains. But ferrites have small saturation magnetization, therefore the performance at GHz frequencies is rather poor. That is why functionalized nanocomposites comprising magnetic nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm, and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have a significant potential for the electronics industry. When the size of the nanoparticles is smaller than the critical size for multidomain formation, these nanocomposites can be regarded as an ensemble of particles in single-domain states and the losses (due for example to eddy currents) are expected to be relatively small. Here we review the theory of magnetism in such materials, and we present a novel measurement method used for the characterization of the electromagnetic properties of composites with nanomagnetic insertions. We also present a few experimental results obtained on composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table

    Optical memory based on ultrafast wavelength switching in a bistable microlaser

    Full text link
    We propose an optical memory cell based on ultrafast wavelength switching in coupled-cavity microlasers, featuring bistability between modes separated by several nanometers. A numerical implementation is demonstrated by simulating a two-dimensional photonic crystal microlaser. Switching times of less than 10 ps, switching energy around 15--30 fJ and on-off contrast of more than 40 dB are achieved. Theoretical guidelines for optimizing the performance of the memory cell in terms of switching time and energy are drawn.Comment: to appear in Optics Letter

    Stable recovery of coefficients in an inverse fault friction problem

    Full text link
    We consider the inverse fault friction problem of determining the friction coefficient in the Tresca friction model, which can be formulated as an inverse problem for differential inequalities. We show that the measurements of elastic waves during a rupture uniquely determine the friction coefficient at the rupture surface with explicit stability estimates

    Static friction measurements on steel against uncoated and coated cast iron

    Get PDF
    Static friction is a phenomenon we may mainly consider as related to frictional joints within staticmechanics. The step from static friction to tribological phenomena is, however, rather short, since at theonset of sliding in a mechanical contact, the static friction determines the initial resistance against motion.Static friction furthermore plays a role in contacts subjected to traction and fretting. Although being aphenomenon of short duration, the tribological phenomena during the transition from static friction to slidingfriction may be of great importance for the operational life of the contact surfaces, particularly if theprocedure is repeated for a sufficient number of times.The present paper describes the principles of static friction measurements, details of the employed staticfriction tribometer and the results of measurements with unlubricated and lubricated sliding couplesconsisting of steel against uncoated and coated cast iron

    Ferromagnetic resonance in ϵ\epsilon-Co magnetic composites

    Full text link
    We investigate the electromagnetic properties of assemblies of nanoscale ϵ\epsilon-cobalt crystals with size range between 5 nm to 35 nm, embedded in a polystyrene (PS) matrix, at microwave (1-12 GHz) frequencies. We investigate the samples by transmission electron microscopy (TEM) imaging, demonstrating that the particles aggregate and form chains and clusters. By using a broadband coaxial-line method, we extract the magnetic permeability in the frequency range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance with respect to an externally applied magnetic field. We find that the zero-magnetic field ferromagnetic resonant peak shifts towards higher frequencies at finite magnetic fields, and the magnitude of complex permeability is reduced. At fields larger than 2.5 kOe the resonant frequency changes linearly with the applied magnetic field, demonstrating the transition to a state in which the nanoparticles become dynamically decoupled. In this regime, the particles inside clusters can be treated as non-interacting, and the peak position can be predicted from Kittel's ferromagnetic resonance theory for non-interacting uniaxial spherical particles combined with the Landau-Lifshitz-Gilbert (LLG) equation. In contrast, at low magnetic fields this magnetic order breaks down and the resonant frequency in zero magnetic field reaches a saturation value reflecting the interparticle interactions as resulting from aggregation. Our results show that the electromagnetic properties of these composite materials can be tuned by external magnetic fields and by changes in the aggregation structure.Comment: 14 pages, 13 figure

    Tensor calculus on noncommutative spaces

    Full text link
    It is well known that for a given Poisson structure one has infinitely many star products related through the Kontsevich gauge transformations. These gauge transformations have an infinite functional dimension (i.e., correspond to an infinite number of degrees of freedom per point of the base manifold). We show that on a symplectic manifold this freedom may be almost completely eliminated if one extends the star product to all tensor fields in a covariant way and impose some natural conditions on the tensor algebra. The remaining ambiguity either correspond to constant renormalizations to the symplectic structure, or to maps between classically equivalent field theory actions. We also discuss how one can introduce the Riemannian metric in this approach and the consequences of our results for noncommutative gravity theories.Comment: 17p; v2: extended version, to appear in CQ
    • …
    corecore