35 research outputs found

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Systematic review and meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke: an update

    Get PDF
    Interleukin-1 receptor antagonist (IL-1 RA) is an anti-inflammatory protein used clinically to treat rheumatoid arthritis and is considered a promising candidate therapy for stroke. Here, we sought to update the existing systematic review and meta-analysis of IL-1 RA in models of ischaemic stroke, published in 2009, to assess efficacy, the range of circumstances in which efficacy has been tested and whether the data appear to be confounded due to reported study quality and publication bias. We included 25 sources of data, 11 of which were additional to the original review. Overall, IL-1 RA reduced infarct volume by 36.2 % (95 % confidence interval 31.6–40.7, n = 76 comparisons from 1283 animals). Assessments for publication bias suggest 30 theoretically missing studies which reduce efficacy to 21.9 % (17.3–26.4). Efficacy was higher where IL-1 RA was administered directly into the ventricles rather than peripherally, and studies not reporting allocation concealment during the induction of ischaemia reported larger treatment effects. The preclinical data supporting IL-1 RA as a candidate therapy for ischaemic stroke have improved. The reporting of measures to reduce the risk of bias has improved substantially in this update, and studies now include the use of animals with relevant co-morbidities. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12975-016-0489-z) contains supplementary material, which is available to authorized users

    Identifying stroke therapeutics from preclinical models: A protocol for a novel application of network meta-analysis

    Get PDF
    Introduction: Globally, stroke is the second leading cause of death. Despite the burden of illness and death, few acute interventions are available to patients with ischemic stroke. Over 1,000 potential neuroprotective therapeutics have been evaluated in preclinical models. It is important to use robust evidence synthesis methods to appropriately assess which therapies should be translated to the clinical setting for evaluation in human studies. This protocol details planned methods to conduct a systematic review to identify and appraise eligible studies and to use a network meta-analysis to synthesize available evidence to answer the following questions: in preclinical in vivo models of focal ischemic stroke, what are the relative benefits of competing therapies tested in combination with the gold standard treatment alteplase in (i) reducing cerebral infarction size, and (ii) improving neurobehavioural outcomes? Methods: We will search Ovid Medline and Embase for articles on the effects of combination therapies with alteplase. Controlled comparison studies of preclinical in vivo models of experimentally induced focal ischemia testing the efficacy of therapies with alteplase versus alteplase alone will be identified. Outcomes to be extracted include infarct size (primary outcome) and neurobehavioural measures. Risk of bias and construct validity will be assessed using tools appropriate for preclinical studies. Here we describe steps undertaken to perform preclinical network meta-analysis to synthesise all evidence for each outcome and obtain a comprehensive ranking of all treatments. This will be a novel use of this evidence synthesis approach in stroke medicine to assess pre-clinical therapeutics. Combining all evidence to simultaneously compare mutliple therapuetics tested preclinically may provide a rationale for the clinical translation of therapeutics for patients with ischemic stroke.  Dissemination: Review findings will be submitted to a peer-reviewed journal and presented at relevant scientific meetings to promote knowledge transfer. Registration: PROSPERO number to be submitted following peer review

    Elemental and chemically specific x-ray fluorescence imaging of biological systems

    Get PDF

    Systematic Review and Meta-analysis: Important Tools in Understanding Drug Development for Stroke

    No full text
    Animal models of ischaemic stroke have become an integral part of the preclinical pipeline for identifying novel neuroprotective drug targets and drugs. As the process serves as a filter, researchers do not expect complete concordance between the experimental animal and human clinical trial data. However, the paucity of clear examples of translation of promising animal results into drugs that work in a clinical setting has raised concerns about the utility of this translational paradigm. Preclinical systematic reviews have been used in response to these concerns to identify weaknesses in animal studies and provide empirical evidence supporting improvements to the design and conduct of preclinical animal experiments. We propose that further strategic development and application of data analysis methods can help continue this process of improvement and help identify the most promising therapeutic targets and drugs. These next steps in systematic review aim to tighten the focus of preclinical research, streamline the drug development process, and minimise research waste
    corecore