11 research outputs found

    Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly

    No full text
    Although a growing number of studies have documented the evolution of adult dispersal-related traits at the range edge of poleward-expanding species, we know little about evolutionary changes in immune function or traits expressed by nondispersing larvae. We investigated differentiation in larval (growth and development) and adult traits (immune function and flight-related traits) between replicated core and edge populations of the poleward-moving damselfly Coenagrion scitulum. These traits were measured on individuals reared in a common garden experiment at two different food levels, as allocation trade-offs may be easier to detect under energy shortage. Edge individuals had a faster larval life history (growth and development rates), a higher adult immune function and a nearly significant higher relative flight muscle mass. Most of the differentiation between core and edge populations remained and edge populations had a higher relative flight muscle mass when corrected for latitude-specific thermal regimes, and hence could likely be attributed to the range expansion process per se. We here for the first time document a higher immune function in individuals at the expansion front of a poleward-expanding species and documented the rarely investigated evolution of faster life histories during range expansion. The rapid multivariate evolution in these ecological relevant traits between edge and core populations is expected to translate into changed ecological interactions and therefore has the potential to generate novel eco-evolutionary dynamics at the expansion front

    First-season growth and food of YOY pike (Esox lucius) are habitat specific within a lake

    No full text
    Piscivorous fish are important predators in aquatic systems and as such they can have far-reaching effects on ecosystem composition and function. These effects depend on piscivore predation rates and behaviour, and recruitment of young-of-the-year fish into piscivory can hereby govern ecosystem properties. Growth and recruitment can differ between water bodies due to e.g. general productivity, but information on variation in juvenile growth and body condition between habitats within water bodies is scant. We here evaluate growth, body condition, food occurrence and stomach contents of an important piscivore, pike (Esox lucius), over the first growth season in two contrasting and spatially separated homogenous habitat types (emergent and submerged vegetation separated by 50 m of open sand) within the same lake. Individual size and body condition in pike were higher in the submerged vegetation early in the season, whereas by the end of their first summer pike were larger and in higher body condition in the emergent vegetation, in spite of occurrence of zooplankton, macroinvertebrates and fish prey being overall higher in the submerged vegetation. Pike showed habitat-specific patterns of macroinvertebrate consumption (higher in the submerged vegetation) and date-specific patterns of zooplankton (higher early in the season), macroinvertebrate (lower late in the season) and fish (higher later in the season) consumption that were not a result of occurrence of food types, as occurrence and consumption patterns did not match. We conclude that pike that hatched in the emergent vegetation habitat were larger towards the end of the season and, hence, these pike should have a higher survival probability and possibly contribute more to pike population density and predation at older ages, but also that submerged vegetation provides an alternative and added recruitment environment for pike in shallow lake ecosystems

    The Phylogeny and Classification of Predaceous Diving Beetles

    No full text
    corecore