167 research outputs found

    Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems

    Get PDF
    Red blood cells (RBCs) constitute a unique drug delivery system as a biologic or hybrid carrier capable of greatly enhancing pharmacokinetics, altering pharmacodynamics (for example, by changing margination within the intravascular space), and modulating immune responses to appended cargoes. Strategies for RBC drug delivery systems include internal and surface loading, and the latter can be performed both ex vivo and in vivo. A relatively new avenue for RBC drug delivery is their application as a carrier for nanoparticles. Efforts are also being made to incorporate features of RBCs in nanocarriers to mimic their most useful aspects, such as long circulation and stealth features. RBCs have also recently been explored as carriers for the delivery of antigens for modulation of immune response. Therefore, RBC-based drug delivery systems represent supercarriers for a diverse array of biomedical interventions, and this is reflected by several industrial and academic efforts that are poised to enter the clinical realm

    Bivalent engagement of endothelial surface antigens is critical to prolonged surface targeting and protein delivery in vivo

    Full text link
    Targeted drug delivery to the endothelium has the potential to generate localized therapeutic effects at the blood- tissue interface. For some therapeutic cargoes, it is essential to maintain contact with the bloodstream to exert protective effects. The pharmacokinetics (PK) of endothelial surface- targeted affinity ligands and biotherapeutic cargo remain a largely unexplored area, despite obvious translational implications for this strategy. To bridge this gap, we site- specifically radiolabeled mono- (scFv) and bivalent (mAb) affinity ligands specific for the endothelial cell adhesion molecules, PECAM- 1 (CD31) and ICAM- 1 (CD54). Radiotracing revealed similar lung biodistribution at 30 minutes post- injection (79.3% ± 4.2% vs 80.4% ± 10.6% ID/g for αICAM and 58.9% ± 3.6% ID/g vs. 47.7% ± 5.8% ID/g for αPECAM mAb vs. scFv), but marked differences in organ residence time, with antibodies demonstrating an order of magnitude greater area under the lung concentration vs. time curve (AUCinf 1698 ± 352 vs. 53.3 ± 7.9 ID/g*hrs for αICAM and 1023 ± 507 vs. 114 ± 37 ID/g*hrs for αPECAM mAb vs scFv). A physiologically based pharmacokinetic model, fit to and validated using these data, indicated contributions from both superior binding characteristics and prolonged circulation time supporting multiple binding- detachment cycles. We tested the ability of each affinity ligand to deliver a prototypical surface cargo, thrombomodulin (TM), using one- to- one protein conjugates. Bivalent mAb- TM was superior to monovalent scFv- TM in both pulmonary targeting and lung residence time (AUCinf 141 ± 3.2 vs 12.4 ± 4.2 ID/g*hrs for ICAM and 188 ± 90 vs 34.7 ± 19.9 ID/g*hrs for PECAM), despite having similar blood PK, indicating that binding strength is more important parameter than the kinetics of binding. To maximize bivalent target engagement, we synthesized an oriented, end- to- end anti- ICAM mAb- TM conjugate and found that this therapeutic had the best lung residence time (AUCinf 253 ± 18 ID/g*hrs) of all TM modalities. These observations have implications not only for the delivery of TM, but also potentially all therapeutics targeted to the endothelial surface.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156501/3/fsb220760_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156501/2/fsb220760-sup-0001-Supinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156501/1/fsb220760.pd

    Ribonucleolytic activity of mycoplasmas

    Get PDF
    Mycoplasmas are incapable of de novo synthesis of nucleotides and must therefore secrete nucleases in order to replenish the pool of nucleic acid precursors. The nucleolytic activity of mycoplasmas is an important factor in their pathogenicity. Bacterial ribonucleases (RNases) may produce a broad spectrum of biological effects, including antiviral and antitumor activity. Mycoplasma RNases are therefore of interest. In the present work, the capacity of Acholeplasma laidlawii and Mycoplasma hominis for RNase synthesis and secretion was studied. During the stationary growth phase, these organisms were found to synthesize Mg2+-dependent RNases, with their highest activity detected outside the cells. Localization of A. laidlawii RNases was determined: almost 90% of the RNase activity was found to be associated with the membrane vesicles. Bioinformational analysis revealed homology between the nucleotide sequences of 14 Bacillus subtilis genes encoding the products with RNase activity and the genes of the mycoplasmas under study. Amino acid sequences of 4 A. laidlawii proteins with ribonuclease activity and the Bsn RNase were also established. © 2014 Pleiades Publishing, Ltd

    Adaptation of Mycoplasma gallisepticum to unfavorable growth conditions: Changes in morphological and physiological characteristics

    Get PDF
    Adaptation of Mycoplasma gallisepticum to unfavorable growth conditions results in altered morphological and physiological characteristics of the cells. M. gallisepticum populations in a complete nutrient medium contain pear-shaped vegetative cells ( d - 0.3 μm; l - 0.8 μm) with pronounced polar and cytoskeletonlike structures. Such mycoplasma cells are able to induce damage in a bacterial genome, causing an SOS response of the test strain (Escherichia coli PQ37). In a starvation medium, M. gallisepticum produces nanoforms, small coccoid cells (d - 0.15-0.2 μm) without either polar or cytoskeleton-like structures. Unlike vegetative cells, nanoforms do not induce genome damage. Alleviation of unfavorable growth conditions results in a reversion of nanoforms to vegetative cells. © 2008 MAIK Nauka

    Piper sarmentosum inhibits ICAM-1 and Nox4 gene expression in oxidative stress-induced human umbilical vein endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aqueous extract of <it>Piper sarmentosum </it>(AEPS) is known to possess antioxidant and anti-atherosclerotic activities but the mechanism responsible for it remains unclear. In early part of atherosclerosis, nuclear factor-kappa B (NF-κB) induces the expression of cellular adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and E-selectin. NADPH oxidase 4 (Nox4) is the predominant source of superoxide in the endothelial cells whereas superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase (GPx) are the antioxidant enzymes responsible for inactivating reactive oxygen species. The present study aimed to investigate the effects of AEPS on the gene expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx in cultured human umbilical vein endothelial cells (HUVECs).</p> <p>Methods</p> <p>HUVECs were divided into four groups:- control; treatment with 180 μM hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>); treatment with 150 μg/mL AEPS and concomitant treatment with AEPS and H<sub>2</sub>O<sub>2 </sub>for 24 hours. Total RNA was extracted from all the groups of HUVEC using TRI reagent. Subsequently, qPCR was carried out to determine the mRNA expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx. The specificity of the reactions was verified using melting curve analysis and agarose gel electrophoresis.</p> <p>Results</p> <p>When stimulated with H<sub>2</sub>O<sub>2</sub>, HUVECs expressed higher level of ICAM-1 (1.3-fold) and Nox4 (1.2-fold) mRNA expression. However, AEPS treatment led to a reduction in the mRNA expression of ICAM-1 (p < 0.01) and Nox4 (p < 0.05) in the H<sub>2</sub>O<sub>2</sub>-induced HUVECs. AEPS also upregulated the mRNA expression of SOD1 (p < 0.05), CAT (p < 0.01) and GPx (p < 0.05) in oxidative stress-induced HUVECs. There was no significant change in the mRNA expression of VCAM-1 and E-selectin.</p> <p>Conclusion</p> <p>The expressional suppression of ICAM-1 and Nox4 and induction of antioxidant enzymes might be an important component of the vascular protective effect of AEPS.</p

    Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood

    Get PDF
    corecore