1,128 research outputs found

    Lagrange-Fedosov Nonholonomic Manifolds

    Full text link
    We outline an unified approach to geometrization of Lagrange mechanics, Finsler geometry and geometric methods of constructing exact solutions with generic off-diagonal terms and nonholonomic variables in gravity theories. Such geometries with induced almost symplectic structure are modelled on nonholonomic manifolds provided with nonintegrable distributions defining nonlinear connections. We introduce the concept of Lagrange-Fedosov spaces and Fedosov nonholonomic manifolds provided with almost symplectic connection adapted to the nonlinear connection structure. We investigate the main properties of generalized Fedosov nonholonomic manifolds and analyze exact solutions defining almost symplectic Einstein spaces.Comment: latex2e, v3, published variant, with new S.V. affiliatio

    Deformation Quantization of Almost Kahler Models and Lagrange-Finsler Spaces

    Full text link
    Finsler and Lagrange spaces can be equivalently represented as almost Kahler manifolds enabled with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov-type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental Finsler functions on tangent bundles.Comment: the latex 2e variant of the manuscript accepted for JMP, 11pt, 23 page

    A History of International Trade Thought

    Get PDF

    Parietal defects. Laparoscopic aproach

    Get PDF
    Spitalul Elias, București, România, Al XI-lea Congres al Asociației Chirurgilor „Nicolae Anestiadi” din Republica Moldova și cea de-a XXXIII-a Reuniune a Chirurgilor din Moldova „Iacomi-Răzeșu” 27-30 septembrie 2011Experiența clinicii țn defectele parietale abdominale prin abord laparoscopic.Clinic experience in abdominal parieteal defects with laparoscopic aproach

    Al-Substitution Effects on Physical Properties of the Colossal Magnetoresistance Compouns La0.67ca0.33mno3

    Full text link
    We present a detailed study of the polycrystalline perovskite manganites La0.67Ca0.33AlxMn1-xO3 (x = 0, 0.1, 0.15, 0.5) at low temperatures and high magnetic fields, including electrical resistance, magnetization, ac susceptibility. The static magnetic susceptibility was also measured up to 1000 K. All the samples show colossal magnetoresistance behavior and the Curie temperatures decrease with Al doping. The data suggest the presence of correlated magnetic clusters near by the ferromagnetic transition. This appears to be a consequence of the structural and magnetic disorder created by the random distribution of Al atoms.Comment: 13 pages including 5 figure

    On Generators of the Hardy and the Bergman Spaces

    Full text link
    A function which is analytic and bounded in the Unit disk is called a generator for the Hardy space or the Bergman space if polynomials in that function are dense in the corresponding space. We characterize generators in terms of sub-spaces which are invariant under multiplication by the generator and also invariant under multiplication by z, and study wandering properties of such sub-spaces. Density of bounded analytic functions in the sub-spaces of the Hardy space which are invariant under multiplication by the generator is also investigated.Comment: 9 page

    Nonholonomic Ricci Flows: II. Evolution Equations and Dynamics

    Full text link
    This is the second paper in a series of works devoted to nonholonomic Ricci flows. By imposing non-integrable (nonholonomic) constraints on the Ricci flows of Riemannian metrics we can model mutual transforms of generalized Finsler-Lagrange and Riemann geometries. We verify some assertions made in the first partner paper and develop a formal scheme in which the geometric constructions with Ricci flow evolution are elaborated for canonical nonlinear and linear connection structures. This scheme is applied to a study of Hamilton's Ricci flows on nonholonomic manifolds and related Einstein spaces and Ricci solitons. The nonholonomic evolution equations are derived from Perelman's functionals which are redefined in such a form that can be adapted to the nonlinear connection structure. Next, the statistical analogy for nonholonomic Ricci flows is formulated and the corresponding thermodynamical expressions are found for compact configurations. Finally, we analyze two physical applications: the nonholonomic Ricci flows associated to evolution models for solitonic pp-wave solutions of Einstein equations, and compute the Perelman's entropy for regular Lagrange and analogous gravitational systems.Comment: v2 41 pages, latex2e, 11pt, the variant accepted by J. Math. Phys. with former section 2 eliminated, a new section 5 with applications in gravity and geometric mechanics, and modified introduction, conclusion and new reference

    The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry

    Get PDF
    The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key to this debate is the DW structure, which can be of Bloch or N\'eel type, and dramatically affects the efficiency of the different proposed mechanisms. To date, most experiments aiming to address this question have relied on deducing the DW structure and chirality from its motion under additional in-plane applied fields, which is indirect and involves strong assumptions on its dynamics. Here we introduce a general method enabling direct, in situ, determination of the DW structure in ultrathin ferromagnets. It relies on local measurements of the stray field distribution above the DW using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire and find clear signature of pure Bloch DWs. In contrast, we observe left-handed N\'eel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co interface. This method offers a new path for exploring interfacial DMI in ultrathin ferromagnets and elucidating the physics of DW motion under current.Comment: Main text and Supplementary Information, 33 pages and 12 figure
    corecore