8,278 research outputs found

    The full set of cnc_n-invariant factorized SS-matrices

    Full text link
    We use the method of the tensor product graph to construct rational (Yangian invariant) solutions of the Yang-Baxter equation in fundamental representations of cnc_n and thence the full set of cnc_n-invariant factorized SS-matrices. Brief comments are made on their bootstrap structure and on Belavin's scalar Yangian conserved charges.Comment: 10p

    Microstructure-property relationships in directionally solidified single crystal nickel-base superalloys

    Get PDF
    Some of the microstructural features which influence the creep properties of directionally solidified and single crystal nickel-base superalloys are discussed. Gamma precipitate size and morphology, gamma-gamma lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single crystal superalloys at high temperatures, where directional gamma coarsening is prominent, and at lower temperatures, where gamma coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials

    Towards gravitationally assisted negative refraction of light by vacuum

    Full text link
    Propagation of electromagnetic plane waves in some directions in gravitationally affected vacuum over limited ranges of spacetime can be such that the phase velocity vector casts a negative projection on the time-averaged Poynting vector. This conclusion suggests, inter alia, gravitationally assisted negative refraction by vacuum.Comment: 6 page

    Comprehensive cosmographic analysis by Markov Chain Method

    Full text link
    We study the possibility to extract model independent information about the dynamics of the universe by using Cosmography. We intend to explore it systematically, to learn about its limitations and its real possibilities. Here we are sticking to the series expansion approach on which Cosmography is based. We apply it to different data sets: Supernovae Type Ia (SNeIa), Hubble parameter extracted from differential galaxy ages, Gamma Ray Bursts (GRBs) and the Baryon Acoustic Oscillations (BAO) data. We go beyond past results in the literature extending the series expansion up to the fourth order in the scale factor, which implies the analysis of the deceleration, q_{0}, the jerk, j_{0} and the snap, s_{0}. We use the Markov Chain Monte Carlo Method (MCMC) to analyze the data statistically. We also try to relate direct results from Cosmography to dark energy (DE) dynamical models parameterized by the Chevalier-Polarski-Linder (CPL) model, extracting clues about the matter content and the dark energy parameters. The main results are: a) even if relying on a mathematical approximate assumption such as the scale factor series expansion in terms of time, cosmography can be extremely useful in assessing dynamical properties of the Universe; b) the deceleration parameter clearly confirms the present acceleration phase; c) the MCMC method can help giving narrower constraints in parameter estimation, in particular for higher order cosmographic parameters (the jerk and the snap), with respect to the literature; d) both the estimation of the jerk and the DE parameters, reflect the possibility of a deviation from the LCDM cosmological model.Comment: 24 pages, 7 figure

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    Multibreathers in Klein-Gordon chains with interactions beyond nearest neighbors

    Get PDF
    We study the existence and stability of multibreathers in Klein-Gordon chains with interactions that are not restricted to nearest neighbors. We provide a general framework where such long range effects can be taken into consideration for arbitrarily varying (as a function of the node distance) linear couplings between arbitrary sets of neighbors in the chain. By examining special case examples such as three-site breathers with next-nearest-neighbors, we find {\it crucial} modifications to the nearest-neighbor picture of one-dimensional oscillators being excited either in- or anti-phase. Configurations with nontrivial phase profiles, arise, as well as spontaneous symmetry breaking (pitchfork) bifurcations, when these states emerge from (or collide with) the ones with standard (0 or π\pi) phase difference profiles. Similar bifurcations, both of the supercritical and of the subcritical type emerge when examining four-site breathers with either next-nearest-neighbor or even interactions with the three-nearest one-dimensional neighbors. The latter setting can be thought of as a prototype for the two-dimensional building block, namely a square of lattice nodes, which is also examined. Our analytical predictions are found to be in very good agreement with numerical results

    Universal diffusion near the golden chaos border

    Full text link
    We study local diffusion rate DD in Chirikov standard map near the critical golden curve. Numerical simulations confirm the predicted exponent α=5\alpha=5 for the power law decay of DD as approaching the golden curve via principal resonances with period qnq_n (D1/qnαD \sim 1/q^{\alpha}_n). The universal self-similar structure of diffusion between principal resonances is demonstrated and it is shown that resonances of other type play also an important role.Comment: 4 pages Latex, revtex, 3 uuencoded postscript figure

    On the algebra A_{\hbar,\eta}(osp(2|2)^{(2)}) and free boson representations

    Full text link
    A two-parameter quantum deformation of the affine Lie super algebra osp(22)(2)osp(2|2)^{(2)} is introduced and studied in some detail. This algebra is the first example associated with nonsimply-laced and twisted root systems of a quantum current algebra with the structure of a so-called infinite Hopf family of (super)algebras. A representation of this algebra at c=1c=1 is realized in the product Fock space of two commuting sets of Heisenberg algebras.Comment: 14 pages, LaTe

    The SO(N) principal chiral field on a half-line

    Get PDF
    We investigate the integrability of the SO(N) principal chiral model on a half-line, and find that mixed Dirichlet/Neumann boundary conditions (as well as pure Dirichlet or Neumann) lead to infinitely many conserved charges classically in involution. We use an anomaly-counting method to show that at least one non-trivial example survives quantization, compare our results with the proposed reflection matrices, and, based on these, make some preliminary remarks about expected boundary bound-states.Comment: 7 pages, Late

    Yangians, Integrable Quantum Systems and Dorey's rule

    Get PDF
    We study tensor products of fundamental representations of Yangians and show that the fundamental quotients of such tensor products are given by Dorey's rule.Comment: We have made corrections to the results for the Yangians associated to the non--simply laced algebra
    corecore