3,096 research outputs found

    Resonant backward scattering of light by a two-side-open subwavelength metallic slit

    Full text link
    The backward scattering of TM-polarized light by a two-side-open subwavelength slit in a metal film is analyzed. We show that the reflection coefficient versus wavelength possesses a Fabry-Perot-like dependence that is similar to the anomalous behavior of transmission reported in the study [Y. Takakura, Phys. Rev. Lett. \textbf{86}, 5601 (2001)]. The open slit totally reflects the light at the near-to-resonance wavelengths. In addition, we show that the interference of incident and resonantly backward-scattered light produces in the near-field diffraction zone a spatially localized wave whose intensity is 10-103^3 times greater than the incident wave, but one order of magnitude smaller than the intra-cavity intensity. The amplitude and phase of the resonant wave at the slit entrance and exit are different from that of a Fabry-Perot cavity.Comment: 5 figure

    Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    Full text link
    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the QQ-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.Comment: Submitted to Phys. Rev. Lett., 5 pages, 3 figure

    Effectiveness of highly active antiretroviral therapy in HIV-positive children: evaluation at 12 months in a routine program in Cambodia.

    Get PDF
    OBJECTIVE: Increasing access to highly active antiretroviral therapy to reach all those in need in developing countries (scale up) is slowly expanding to HIV-positive children, but documented experience remains limited. We aimed to describe the clinical, immunologic, and virologic outcomes of pediatric patients with >12 months of highly active antiretroviral therapy in 2 routine programs in Cambodia. METHODS: Between June 2003 and March 2005, 212 children who were younger than 13 years started highly active antiretroviral therapy. Most patients started a standard first-line regimen of lamivudine, stavudine, and nevirapine, using split adult fixed-dosage combinations. CD4 percentage and body weight were monitored routinely. A cross-sectional virologic analysis was conducted in January 2006; genotype resistance testing was performed for patients with a detectable viral load. RESULTS: Mean age of the subjects was 6 years. Median CD4 percentage at baseline was 6. Survival was 92% at 12 months and 91% at 24 months; 13 patients died, and 4 were lost to follow-up. A total of 81% of all patients had an undetectable viral load. Among the patients with a detectable viral load, most mutations were associated with resistance to lamivudine and non-nucleoside reverse-transcriptase inhibitor drugs. Five patients had developed extensive antiretroviral resistance. Being an orphan was found to be a predictor of virologic failure. CONCLUSIONS: This study provides additional evidence of the effectiveness of integrating HIV/AIDS care with highly active antiretroviral therapy for children in a routine setting, with good virologic suppression and immunologic recovery achieved by using split adult fixed-dosage combinations. Viral load monitoring and HIV genotyping are valuable tools for the clinical follow-up of the patients. Orphans should receive careful follow-up and extra support

    Lifetime measurements of Triaxial Strongly Deformed bands in 163^{163}Tm

    Full text link
    With the Doppler Shift Attenuation Method, quadrupole transition moments, QtQ_t, were determined for the two recently proposed Triaxial Strongly Deformed (TSD) bands in 163^{163}Tm. The measured QtQ_t moments indicate that the deformation of these bands is larger than that of the yrast, signature partners. However, the measured values are smaller than those predicted by theory. This observation appears to be valid for TSD bands in several nuclei of the regionComment: 8 pages, 5 figures. Submitted to Physical Review

    Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?

    Full text link
    The existence of resonant enhanced transmission and collimation of light waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820 (2002)] leads to the basic question: Can a light be enhanced and simultaneously localized in space and time by a subwavelength slit? To address this question, the spatial distribution of the energy flux of an ultrashort (femtosecond) wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by using the conventional approach based on the Neerhoff and Mur solution of Maxwell's equations. The results show that a light can be enhanced by orders of magnitude and simultaneously localized in the near-field diffraction zone at the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure

    Towards new insights in the phylogeny of the Spermacoce clade: an integrative taxonomic approach using morphology, anatomy, ecology and phylogenetics reveĂĄis the new genus Leonoria

    Get PDF
    Phylogenetic inference analyses o f two nuclear and four plastid DNA markers from 82 accessions representing 19 genera o f the Spermacoce clade (Spermacoceae-Rubiaceae) confirm that the Brazilian genus Denscantia is biphyletic. By the analyses o f reproductive morphological characters, foliar morpho-anatomy and histochemical, geographical distribution ranges, and ecological niche derived from climatic space, Denscantia caldcĂłla is shown as a distinct lineage from the other Denscantia species, indicating its taxonomic segregation into a new monospecific genus Leonoria. Significant morphological diĂ­ferences o f Leonoria with Denscantia were found in inflorescence organization, stigma shape, fruit dehiscence, and pollen morphology. Morphoanatomical variation among leaf traits were found in epidemial cells, occurrence o f trichomes, mesophyll histochemical, and vascular organization. Analysis o f occurrence records o f 205 specimens demonstrates a clear ecological distinction between o f Denscantia s.s. and Leonoria, which is ecologically confined to limestone outcrops associated with seasonally dry forests. The current study demonstrates the importance of an integrative taxonomic approach - in which mĂșltiple disciplines are combined - to the unravel complex taxonomic pattems within Rubiaceae. The genus Leonoria, to be newly described, is dedicated to Professor Elsa Leonor Cabral

    Nuclear Theory and Science of the Facility for Rare Isotope Beams

    Full text link
    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars, and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This article overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas. \keywords{Nuclear Structure and Reactions. Nuclear Astrophysics. Fundamental Interactions. High Performance Computing. Rare Isotopes. Radioactive Beams.Comment: 20 pages, 7 figure

    Disparate Effects of Cu and V on Structures of Exohedral Transition Metal-Doped Silicon Clusters: A Combined Far-Infrared Spectroscopic and Computational Study

    No full text
    The growth mechanisms of small cationic silicon clusters containing up to 11 Si atoms, exohedrally doped by V and Cu atoms, are described. We find that as dopants, V and Cu follow two different paths: while V prefers substitution of a silicon atom in a highly coordinated position of the cationic bare silicon clusters, Cu favors adsorption to the neutral or cationic bare clusters in a lower coordination site. The different behavior of the two transition metals becomes evident in the structures of SinM+ (n = 4−11 for M = V, and n = 6−11 for M = Cu), which are investigated by density functional theory and, for several sizes, confirmed by comparison with their experimental vibrational spectra. The spectra are measured on the corresponding SinM+·Ar complexes, which can be formed for the exohedrally doped silicon clusters. The comparison between experimental and calculated spectra indicates that the BP86 functional is suitable to predict far-infrared spectra of these clusters. In most cases, the calculated infrared spectrum of the lowest-lying isomer fits well with the experiment, even when various isomers and different electronic states are close in energy. However, in a few cases, namely Si9Cu+, Si11Cu+, and Si10V+, the experimentally verified isomers are not the lowest in energy according to the density functional theory calculations, but their structures still follow the described growth mechanism. The different growth patterns of the two series of doped Si clusters reflect the role of the transition metal’s 3d orbitals in the binding of the dopant atoms

    Electromagnetic properties of non-Dirac particles with rest spin 1/2

    Full text link
    We resolve a number of questions related to an analytic description of electromagnetic form factors of non-Dirac particles with the rest spin 1/2. We find the general structure of a matrix antisymmetric tensor operator. We obtain two recurrence relations for matrix elements of finite transformations of the proper Lorentz group and explicit formulas for a certain set of such elements. Within the theory of fields with double symmetry, we discuss writing the components of wave vectors of particles in the form of infinite continued fractions. We show that for Q2≀0.5Q^{2} \leq 0.5 (GeV/c)2^{2}, where Q2Q^{2} is the transferred momentum squared, electromagnetic form factors that decrease as Q2Q^{2} increases and are close to those experimentally observed in the proton can be obtained without explicitly introducing an internal particle structure.Comment: 18 pages, 2 figure

    Core excitations across the neutron shell gap in ÂČ⁰⁷Tl

    Get PDF
    The single closed-neutron-shell, one proton-hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupol
    • 

    corecore