The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory
for the study of nuclear structure, reactions and astrophysics. Experiments
with intense beams of rare isotopes produced at FRIB will guide us toward a
comprehensive description of nuclei, elucidate the origin of the elements in
the cosmos, help provide an understanding of matter in neutron stars, and
establish the scientific foundation for innovative applications of nuclear
science to society. FRIB will be essential for gaining access to key regions of
the nuclear chart, where the measured nuclear properties will challenge
established concepts, and highlight shortcomings and needed modifications to
current theory. Conversely, nuclear theory will play a critical role in
providing the intellectual framework for the science at FRIB, and will provide
invaluable guidance to FRIB's experimental programs. This article overviews the
broad scope of the FRIB theory effort, which reaches beyond the traditional
fields of nuclear structure and reactions, and nuclear astrophysics, to explore
exciting interdisciplinary boundaries with other areas.
\keywords{Nuclear Structure and Reactions. Nuclear
Astrophysics. Fundamental Interactions. High Performance
Computing. Rare Isotopes. Radioactive Beams.Comment: 20 pages, 7 figure