197 research outputs found
Chaotic scattering through coupled cavities
We study the chaotic scattering through an Aharonov-Bohm ring containing two
cavities. One of the cavities has well-separated resonant levels while the
other is chaotic, and is treated by random matrix theory. The conductance
through the ring is calculated analytically using the supersymmetry method and
the quantum fluctuation effects are numerically investigated in detail. We find
that the conductance is determined by the competition between the mean and
fluctuation parts. The dephasing effect acts on the fluctuation part only. The
Breit-Wigner resonant peak is changed to an antiresonance by increasing the
ratio of the level broadening to the mean level spacing of the random cavity,
and the asymmetric Fano form turns into a symmetric one. For the orthogonal and
symplectic ensembles, the period of the Aharonov-Bohm oscillations is half of
that for regular systems. The conductance distribution function becomes
independent of the ensembles at the resonant point, which can be understood by
the mode-locking mechanism. We also discuss the relation of our results to the
random walk problem.Comment: 13 pages, 9 figures; minor change
Cross-relaxation and phonon bottleneck effects on magnetization dynamics in LiYF4:Ho3+
Frequency and dc magnetic field dependences of dynamic susceptibility in
diluted paramagnets LiYF:Ho have been measured at liquid helium
temperatures in the ac and dc magnetic fields parallel to the symmetry axis of
a tetragonal crystal lattice. Experimental data are analyzed in the framework
of microscopic theory of relaxation rates in the manifold of 24
electron-nuclear sublevels of the lowest non-Kramers doublet and the first
excited singlet in the Ho ground multiplet split by the crystal
field of S symmetry. The one-phonon transition probabilities were computed
using electron-phonon coupling constants calculated in the framework of
exchange charge model and were checked by optical piezospectroscopic
measurements. The specific features observed in field dependences of the in-
and out-of-phase susceptibilities (humps and dips, respectively) at the
crossings (anti-crossings) of the electron-nuclear sublevels are well
reproduced by simulations when the phonon bottleneck effect and the cross-spin
relaxation are taken into account
Inhomogeneous DNA: conducting exons and insulating introns
Parts of DNA sequences known as exons and introns play very different role in
coding and storage of genetic information. Here we show that their conducting
properties are also very different. Taking into account long-range correlations
among four basic nucleotides that form double-stranded DNA sequence, we
calculate electron localization length for exon and intron regions. Analyzing
different DNA molecules, we obtain that the exons have narrow bands of extended
states, unlike the introns where all the states are well localized. The band of
extended states is due to a specific form of the binary correlation function of
the sequence of basic DNA nucleotides.Comment: 14 pages, 6 figure
Magnetoconductance oscillations in quasiballistic multimode nanowires
We calculate the conductance of quasi-one-dimensional nanowires with
electronic states confined to a surface charge layer, in the presence of a
uniform magnetic field. Two-terminal magnetoconductance (MC) between two leads
deposited on the nanowire via tunnel barriers is dominated by density-of-states
(DOS) singularities, when the leads are well apart. There is also a mesoscopic
correction due to a higher-order coherent tunneling between the leads for small
lead separation. The corresponding MC structure depends on the interference
between electron propagation via different channels connecting the leads, which
in the simplest case, for the magnetic field along the wire axis, can be
crudely characterized by relative winding numbers of paths enclosing the
magnetic flux. In general, the MC oscillations are aperiodic, due to the Zeeman
splitting, field misalignment with the wire axis, and a finite extent of
electron distribution across the wire cross section, and are affected by
spin-orbit coupling. The quantum-interference MC traces contain a wealth of
information about the electronic structure of multichannel wires, which would
be complimentary to the DOS measurements. We propose a four-terminal
configuration to enhance the relative contribution of the higher-order
tunneling processes and apply our results to realistic InAs nanowires carrying
several quantum channels in the surface charge-accumulation layer.Comment: 11 pages, 8 figure
Frequency-Dependent Shot Noise as a Probe of Electron-Electron Interaction in Mesoscopic Diffusive Contacts
The frequency-dependent shot noise in long and narrow mesoscopic diffusive
contacts is numerically calculated. The case of arbitrarily strong
electron-electron scattering and zero temperature of electrodes is considered.
For all voltages, the noise increases with frequency and tends to finite
values. These limiting values are larger than the Poissonian noise and increase
nearly as voltage to power 4/3. This allows one to experimentally determine the
parameters of electron-electron interaction.Comment: 3 pages, RevTeX, 3 eps figure
Non-equilibrium electronic transport and interaction in short metallic nanobridges
We have observed interaction effects in the differential conductance of
short, disordered metal bridges in a well-controlled non-equilibrium situation,
where the distribution function has a double Fermi step. A logarithmic scaling
law is found both for the temperature and for the voltage dependence of in
all samples. The absence of magnetic field dependence and the low
dimensionality of our samples allow us to distinguish between several possible
interaction effects, proposed recently in nanoscopic samples. The universal
scaling curve is explained quantitatively by the theory of electron-electron
interaction in diffusive metals, adapted to the present case, where the sample
size is smaller than the thermal diffusion length.Comment: Published version, 6 Pages, 6 postscript figures, 1 tabl
Aharonov-Bohm signature for neutral excitons in type-II quantum dot ensembles
It is commonly believed that the Aharonov-Bohm (AB) effect is a typical
feature of the motion of a charged particle interacting with the
electromagnetic vector potential. Here we present a magnetophotoluminescence
study of type-II InP/GaAs self-assembled quantum dots, unambiguously revealing
the Aharonov-Bohm-type oscillations for neutral excitons when the hole ground
state changes its angular momentum from lh = 0 to lh = 1, 2, and 3. The hole
ring parameters derived from a simple model are in excellent agreement with the
structural parameters for this system.Comment: Revised version, 10 pages, 3 figure
Superconductivity on the localization threshold and magnetic-field-tuned superconductor-insulator transition in TiN films
Temperature- and magnetic-field dependent measurements of the resistance of
ultrathin superconducting TiN films are presented. The analysis of the
temperature dependence of the zero field resistance indicates an underlying
insulating behavior, when the contribution of Aslamasov-Larkin fluctuations is
taken into account. This demonstrates the possibility of coexistence of the
superconducting and insulating phases and of a direct transition from the one
to the other. The scaling behavior of magnetic field data is in accordance with
a superconductor-insulator transition (SIT) driven by quantum phase
fluctuations in two-dimensional superconductor. The temperature dependence of
the isomagnetic resistance data on the high-field side of the SIT has been
analyzed and the presence of an insulating phase was confirmed. A transition
from the insulating to a metallic phase is found at high magnetic fields, where
the zero-temperature asymptotic value of the resistance being equal to h/e^2.Comment: 5 pages, 4 eps figures, RevTeX4, Published versio
Three "universal" mesoscopic Josephson effects
1. Introduction
2. Supercurrent from Excitation Spectrum
3. Excitation Spectrum from Scattering Matrix
4. Short-Junction Limit
5. Universal Josephson Effects
5.1 Quantum Point Contact
5.2 Quantum Dot
5.3 Disordered Point Contact (Average supercurrent, Supercurrent
fluctuations)Comment: 21 pages, 2 figures; legacy revie
Quantum dot dephasing by edge states
We calculate the dephasing rate of an electron state in a pinched quantum
dot, due to Coulomb interactions between the electron in the dot and electrons
in a nearby voltage biased ballistic nanostructure. The dephasing is caused by
nonequilibrium time fluctuations of the electron density in the nanostructure,
which create random electric fields in the dot. As a result, the electron level
in the dot fluctuates in time, and the coherent part of the resonant
transmission through the dot is suppressed
- …