Temperature- and magnetic-field dependent measurements of the resistance of
ultrathin superconducting TiN films are presented. The analysis of the
temperature dependence of the zero field resistance indicates an underlying
insulating behavior, when the contribution of Aslamasov-Larkin fluctuations is
taken into account. This demonstrates the possibility of coexistence of the
superconducting and insulating phases and of a direct transition from the one
to the other. The scaling behavior of magnetic field data is in accordance with
a superconductor-insulator transition (SIT) driven by quantum phase
fluctuations in two-dimensional superconductor. The temperature dependence of
the isomagnetic resistance data on the high-field side of the SIT has been
analyzed and the presence of an insulating phase was confirmed. A transition
from the insulating to a metallic phase is found at high magnetic fields, where
the zero-temperature asymptotic value of the resistance being equal to h/e^2.Comment: 5 pages, 4 eps figures, RevTeX4, Published versio