We calculate the dephasing rate of an electron state in a pinched quantum
dot, due to Coulomb interactions between the electron in the dot and electrons
in a nearby voltage biased ballistic nanostructure. The dephasing is caused by
nonequilibrium time fluctuations of the electron density in the nanostructure,
which create random electric fields in the dot. As a result, the electron level
in the dot fluctuates in time, and the coherent part of the resonant
transmission through the dot is suppressed