96 research outputs found

    Identification of a conserved N-terminal domain in the first module of ACV synthetases

    Get PDF
    Abstract The l‐ή‐(α‐aminoadipoyl)‐l‐cysteinyl‐d‐valine synthetase (ACVS) is a trimodular nonribosomal peptide synthetase (NRPS) that provides the peptide precursor for the synthesis of ÎČ‐lactams. The enzyme has been extensively characterized in terms of tripeptide formation and substrate specificity. The first module is highly specific and is the only NRPS unit known to recruit and activate the substrate l‐α‐aminoadipic acid, which is coupled to the α‐amino group of l‐cysteine through an unusual peptide bond, involving its ή‐carboxyl group. Here we carried out an in‐depth investigation on the architecture of the first module of the ACVS enzymes from the fungus Penicillium rubens and the bacterium Nocardia lactamdurans. Bioinformatic analyses revealed the presence of a previously unidentified domain at the N‐terminus which is structurally related to condensation domains, but smaller in size. Deletion variants of both enzymes were generated to investigate the potential impact on penicillin biosynthesis in vivo and in vitro. The data indicate that the N‐terminal domain is important for catalysis

    Helixconstraints and amino acid substitution in GLP-1 increase cAMP and insulin secretion but not beta-arrestin 2 signaling

    Get PDF
    Glucagon-like peptide (GLP-1) is an endogenous hormone that induces insulin secretion from pancreatic islets and modified forms are used to treat diabetes mellitus type 2. Understanding how GLP-1 interacts with its receptor (GLP-1R) can potentially lead to more effective drugs. Modeling and NMR studies of the N-terminus of GLP-1 suggest a ÎČ-turn between residues Glu9-Phe12 and a kinked alpha helix between Val16-Gly37. N-terminal turn constraints attenuated binding affinity and activity (compounds 1–8). Lys-Asp (i, i+4) crosslinks in the middle and at the C-terminus increased alpha helicity and cAMP stimulation without much effect on binding affinity or beta-arrestin 2 recruitment (compounds 9–18). Strategic positioning of helix-inducing constraints and amino acid substitutions (Tyr16, Ala22) increased peptide helicity and produced ten-fold higher cAMP potency (compounds 19–28) over GLP-1(7–37)-NH. The most potent cAMP activator (compound 23) was also the most potent inducer of insulin secretion

    Dipoid-Specific Genome Stability Genes of S. cerevisiae: Genomic Screen Reveals Haploidization as an Escape from Persisting DNA Rearrangement Stress

    Get PDF
    Maintaining a stable genome is one of the most important tasks of every living cell and the mechanisms ensuring it are similar in all of them. The events leading to changes in DNA sequence (mutations) in diploid cells occur one to two orders of magnitude more frequently than in haploid cells. The majority of those events lead to loss of heterozygosity at the mutagenesis marker, thus diploid-specific genome stability mechanisms can be anticipated. In a new global screen for spontaneous loss of function at heterozygous forward mutagenesis marker locus, employing three different mutagenesis markers, we selected genes whose deletion causes genetic instability in diploid Saccharomyces cerevisiae cells. We have found numerous genes connected with DNA replication and repair, remodeling of chromatin, cell cycle control, stress response, and in particular the structural maintenance of chromosome complexes. We have also identified 59 uncharacterized or dubious ORFs, which show the genome instability phenotype when deleted. For one of the strongest mutators revealed in our screen, ctf18Δ/ctf18Δ the genome instability manifests as a tendency to lose the whole set of chromosomes. We postulate that this phenomenon might diminish the devastating effects of DNA rearrangements, thereby increasing the cell's chances of surviving stressful conditions. We believe that numerous new genes implicated in genome maintenance, together with newly discovered phenomenon of ploidy reduction, will help revealing novel molecular processes involved in the genome stability of diploid cells. They also provide the clues in the quest for new therapeutic targets to cure human genome instability-related diseases

    Donated chemical probes for open science.

    Get PDF
    Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project
    • 

    corecore