55 research outputs found

    Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure

    IgG Antibodies against Measles, Rubella, and Varicella Zoster Virus Predict Conversion to Multiple Sclerosis in Clinically Isolated Syndrome

    Get PDF
    BACKGROUND:Multiple sclerosis (MS) is characterized by a polyspecific B-cell response to neurotropic viruses such as measles, rubella and varicella zoster, with the corresponding antibodies measurable in CSF as the so-called "MRZ reaction" (MRZR). We aimed to evaluate the relevance of MRZR to predict conversion of patients with clinically isolated syndrome (CIS) to MS, and to compare it to oligoclonal bands (OCB) and MRI. METHODOLOGY/PRINCIPAL FINDINGS:MRZR was determined in a prospective study over 2 years including 40 patients that remained CIS over follow-up (CIS-CIS) and 49 patients that developed MS (CIS-RRMS) using ELISA. Using logistic regression, a score (MRZS) balancing the predictive value of the antibody indices included in MRZR was defined (9 points measles, 8 points rubella, 1 point varicella zoster, cutpoint: sum of scores greater 10). MRZR and MRZS were significantly more frequent in CIS-RRMS as compared to CIS-CIS (p=0.04 and p=0.02). MRZS showed the best positive predictive value (PPV) of all parameters investigated (79%, 95%-CI: 54-94%), which could be further increased by combination with MRI (91%, 95%-CI: 59-99%). CONCLUSIONS/SIGNIFICANCE:Our data indicate the relevance of MRZR to predict conversion to MS. It furthermore shows the importance of weighting the different antibody indices included in MRZR and suggest that patients with positive MRZR are candidates for an early begin of immunomodulatory therapy

    Proteomics Comparison of Cerebrospinal Fluid of Relapsing Remitting and Primary Progressive Multiple Sclerosis

    Get PDF
    Background: Based on clinical representation of disease symptoms multiple sclerosis (MScl) patients can be divided into two major subtypes; relapsing remitting (RR) MScl (85-90%) and primary progressive (PP) MScl (10-15%). Proteomics analysis of cerebrospinal fluid (CSF) has detected a number of proteins that were elevated in MScl patients. Here we specifically aimed to differentiate between the PP and RR subtypes of MScl by comparing CSF proteins. Methodology/Principal Findings: CSF samples (n = 31) were handled according to the same protocol for quantitative mass spectrometry measurements we reported previously. In the comparison of PP MScl versus RR MScl we observed a number of differentially abundant proteins, such as protein jagged-1 and vitamin D-binding protein. Protein jagged-1 was over three times less abundant in PP MScl compared to RR MScl. Vitamin D-binding protein was only detected in the RR MScl samples. These two proteins were validated by independent techniques (western blot and ELISA) as differentially abundant in the comparison between both MScl types. Conclusions/Significance: The main finding of this comparative study is the observation that the proteome profiles of CSF in PP and RR MScl patients overlap to a large extent. Still, a number of differences could be observed. Protein jagged-1 is a ligand for multiple Notch receptors and involved in the mediation of Notch signaling. It is suggested in literature that the Notch pathway is involved in the remyelination of MScl lesions. Aberration of normal homeostasis of Vitamin D, of which approximately 90% is bound to vitamin D-binding protein, has been widely implicated in MScl for some years now. Vitamin D directly and indirectly regulates the differentiation, activation of CD4+ T-lymphocytes and can prevent the development of autoimmune processes, and so it may be involved in neuroprotective elements in MScl

    Identification of Protein Networks Involved in the Disease Course of Experimental Autoimmune Encephalomyelitis, an Animal Model of Multiple Sclerosis

    Get PDF
    A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that warrant further research to study their actual contribution to disease pathology

    Resistance to MPTP-Neurotoxicity in α-Synuclein Knockout Mice Is Complemented by Human α-Synuclein and Associated with Increased β-Synuclein and Akt Activation

    Get PDF
    Genetic and biochemical abnormalities of α-synuclein are associated with the pathogenesis of Parkinson's disease. In the present study we investigated the in vivo interaction of mouse and human α-synuclein with the potent parkinsonian neurotoxin, MPTP. We find that while lack of mouse α-synuclein in mice is associated with reduced vulnerability to MPTP, increased levels of human α-synuclein expression is not associated with obvious changes in the vulnerability of dopaminergic neurons to MPTP. However, expressing human α-synuclein variants (human wild type or A53T) in the α-synuclein null mice completely restores the vulnerability of nigral dopaminergic neurons to MPTP. These results indicate that human α-synuclein can functionally replace mouse α-synuclein in regard to vulnerability of dopaminergic neurons to MPTP-toxicity. Significantly, α-synuclein null mice and wild type mice were equally sensitive to neurodegeneration induced by 2′NH2-MPTP, a MPTP analog that is selective for serotoninergic and noradrenergic neurons. These results suggest that effects of α-synuclein on MPTP like compounds are selective for nigral dopaminergic neurons. Immunoblot analysis of β-synuclein and Akt levels in the mice reveals selective increases in β-synuclein and phosphorylated Akt levels in ventral midbrain, but not in other brain regions, of α-synuclein null mice, implicating the α-synuclein-level dependent regulation of β-synuclein expression in modulation of MPTP-toxicity by α-synuclein. Together these findings provide new mechanistic insights on the role α-synuclein in modulating neurodegenerative phenotypes by regulation of Akt-mediated cell survival signaling in vivo

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic

    The 1.28 GHz MeerKAT DEEP2 Image

    Get PDF
    We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one qb » ¢ 68 FWHM primarybeam area with θ = 7 6 FWHM resolution and s = m - n 0.55 0.01 Jy beam 1 rms noise. Its J2000 center position α = 04h 13m 26 4, δ = −80° 00′ 00″ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary-beam attenuation pattern, estimate telescope pointing errors, and pinpoint (u, v) coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion P(D) distribution from 0.25 to 10 μJy with counts of individual DEEP2 sources between 10 μJy and 2.5 mJy. Most sources fainter than S ∼ 100 μJy are distant star-forming galaxies (SFGs) obeying the far-IR/ radio correlation, and sources stronger than 0.25 μJy account for ∼93% of the radio background produced by SFGs. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson model for the evolution of SFGs based on UV and infrared data underpredicts our 1.4 GHz source count in the range -5 log Jy 4 [ ( )] S

    The SARAO MeerKAT 1.3 GHz Galactic Plane Survey

    Get PDF
    We present the SARAO MeerKAT Galactic Plane Survey (SMGPS), a 1.3 GHz continuum survey of almost half of the Galactic Plane (251○ ≤l ≤ 358○ and 2○ ≤l ≤ 61○ at |b| ≤ 1 5). SMGPS is the largest, most sensitive and highest angular resolution 1 GHz survey of the Plane yet carried out, with an angular resolution of 8″ and a broadband RMS sensitivity of ∼10–20 μJy beam−1. Here we describe the first publicly available data release from SMGPS which comprises data cubes of frequency-resolved images over 908–1656 MHz, power law fits to the images, and broadband zeroth moment integrated intensity images. A thorough assessment of the data quality and guidance for future usage of the data products are given. Finally, we discuss the tremendous potential of SMGPS by showcasing highlights of the Galactic and extragalactic science that it permits. These highlights include the discovery of a new population of non-thermal radio filaments; identification of new candidate supernova remnants, pulsar wind nebulae and planetary nebulae; improved radio/mid-IR classification of rare Luminous Blue Variables and discovery of associated extended radio nebulae; new radio stars identified by Bayesian cross-matching techniques; the realisation that many of the largest radio-quiet WISE H II region candidates are not true H II regions; and a large sample of previously undiscovered background H I galaxies in the Zone of Avoidance
    • …
    corecore