150 research outputs found

    Comparison between two mobile absolute gravimeters: optical versus atomic interferometers

    Full text link
    We report a comparison between two absolute gravimeters: the LNE-SYRTE cold atoms gravimeter and FG5#220 of Leibniz Universit\"at of Hannover. They rely on different principles of operation: atomic and optical interferometry. Both are movable which enabled them to participated to the last International Comparison of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral comparison took place in the LNE watt balance laboratory and showed an agreement of 4.3 +/- 6.4 {\mu}Gal

    Comparison of RANS, DES and DDES Results for ONERA M-6 Wing at Transonic Flow Speed Using an In-House Parallel Code

    Get PDF
    The very first thought that comes to the mind with the application area of the DES and DDES schemes is a massively separated flow with highly unsteady flowfield. However, for various complex three dimensional cases, there is no prior knowledge of the flowfield in the domain and it may have mild separation or no separation at all with a steady domain. This study is carried out to see that what will be the behaviour of the DES and DDES schemes in comparison with the URANS scheme if they are applied to a steady state case. An in-house mpi code DG-DES is used for the present study. Three different flux computational schemes named Roe, AUSM and HLLC schemes within DES formulation are compared to check the response for the flows without massive separation and unsteadiness. The cases are run in both single and double precision mode for DES formulation using Roe flux computational scheme to appreciate the accuracy of the solver. A good comparison of pressure distribution with the experimental data is obtained for all URANS, DES and DDES simulations. The pressure distribution results for DES scheme using single and double precision agree well with the experimental data. The pressure distribution predicted by DES using Roe, AUSM and HLLC schemes agree well with the experimental data. The computed values of Cl and Cd are also in close approximity to the other studies. The drag predicted by all DES and DDES simulations is lower than the URANS scheme. It indicates that the DES and DDES schemes generate lower dissipation due to switching to the LES mode and hence result in lower drag prediction as compared with the URANS solution. There is no anomaly observed in the flow due to the use of DES or DDES for steady flow case

    Long-lived photoexcited states in polydiacetylenes with different molecular and supramolecular organization

    Get PDF
    With the aim of determining the importance of the molecular and supramolecular organization on the excited states of polydiacetylenes, we have studied the photoinduced absorption spectra of the red form of poly[1,6-bis(3,6-didodecyl-N-carbazolyl)-2,4-hexadiyne] (polyDCHD-S) and the results compared with those of the blue form of the same polymer. An interpretation of the data is given in terms of both the conjugation length and the interbackbone separation also in relation to the photoinduced absorption spectra of both blue and red forms of poly[1,6-bis(N-carbazolyl)-2,4-hexadiyne] (polyDCHD), which does not carry the alkyl substituents on the carbazolyl side groups. Information on the above properties is derived from the analysis of the absorption and Raman spectra of this class of polydiacetylenes

    The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes

    Get PDF
    CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage

    A 1-Year Prospective French Nationwide Study of Emergency Hospital Admissions in Children and Adults with Primary Immunodeficiency.

    Get PDF
    PURPOSE: Patients with primary immunodeficiency (PID) are at risk of serious complications. However, data on the incidence and causes of emergency hospital admissions are scarce. The primary objective of the present study was to describe emergency hospital admissions among patients with PID, with a view to identifying "at-risk" patient profiles. METHODS: We performed a prospective observational 12-month multicenter study in France via the CEREDIH network of regional PID reference centers from November 2010 to October 2011. All patients with PIDs requiring emergency hospital admission were included. RESULTS: A total of 200 admissions concerned 137 patients (73 adults and 64 children, 53% of whom had antibody deficiencies). Thirty admissions were reported for 16 hematopoietic stem cell transplantation recipients. When considering the 170 admissions of non-transplant patients, 149 (85%) were related to acute infections (respiratory tract infections and gastrointestinal tract infections in 72 (36%) and 34 (17%) of cases, respectively). Seventy-seven percent of the admissions occurred during winter or spring (December to May). The in-hospital mortality rate was 8.8% (12 patients); death was related to a severe infection in 11 cases (8%) and Epstein-Barr virus-induced lymphoma in 1 case. Patients with a central venous catheter (n = 19, 13.9%) were significantly more hospitalized for an infection (94.7%) than for a non-infectious reason (5.3%) (p = 0.04). CONCLUSION: Our data showed that the annual incidence of emergency hospital admission among patients with PID is 3.4%. The leading cause of emergency hospital admission was an acute infection, and having a central venous catheter was associated with a significantly greater risk of admission for an infectious episode

    Contrasting Roles for TLR Ligands in HIV-1 Pathogenesis

    Get PDF
    The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention

    Toward the Integrated Marine Debris Observing System

    Get PDF
    Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS)thatisrequiredtoprovidelong-termmonitoringofthestateofthisanthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and on the safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi- and hyperspectral, fluorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as the state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multi-disciplinary research and serve a diverse community of users
    corecore