435 research outputs found

    Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening

    Get PDF
    The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Minard revisited: exploring augmented reality in information design

    Get PDF
    This study intends to test and confirm the interest and viability of incorporating augmented reality (AR) technologies in cultural mediation driven by information design, focusing on narrative representation. It is specifically intended to explore semantic relations between reality and virtuality in augmented narratives, ie. expanded narratives through the multimodality enhanced by the use of interactive processes based in augmented reality systems. Departing from Charles Minard’s Figurative Map (1869), three experiments were conducted, in order to reinterpret the program embodied in that artefact, testing several hypotheses in which, through augmented reality, the combination of different modes and media configures different semantic relations between real and virtual. The action-reflection approach undertaken with Figurative Map experiments enabled us to observe and openly systematize different augmented reality functions regarding the physical instance, which can potentially expand traditional forms of information design. Although they are not entirely extrapolatable, the proposal of virtual functions regarding reality were repurposed and adapted from the illustration field, specifically from the semantic relation between text and image. It is acknowledged that this is an open model to be reconsidered and reformulated through several action-reflection iterations and fostered through the narrative study.publishe

    Molecular modeling of temperature dependence of solubility parameters for amorphous polymers

    Get PDF
    A molecular modeling strategy is proposed to describe the temperature (T) dependence of solubility parameter (δ) for the amorphous polymers which exhibit glass-rubber transition behavior. The commercial forcefield “COMPASS” is used to support the atomistic simulations of the polymer. The temperature dependence behavior of δ for the polymer is modeled by running molecular dynamics (MD) simulation at temperatures ranging from 250 up to 650 K. Comparing the MD predicted δ value at 298 K and the glass transition temperature (Tg) of the polymer determined from δ–T curve with the experimental value confirm the accuracy of our method. The MD modeled relationship between δ and T agrees well with the previous theoretical works. We also observe the specific volume (v), cohesive energy (Ucoh), cohesive energy density (ECED) and δ shows a similar temperature dependence characteristics and a drastic change around the Tg. Meanwhile, the applications of δ and its temperature dependence property are addressed and discussed

    Review of experimental methods to determine spontaneous combustion susceptibility of coal – Indian context

    Get PDF
    This paper presents a critical review of the different techniques developed to investigate the susceptibility of coal to spontaneous combustion and fire. These methods may be sub-classified into the two following areas: (1) Basic coal characterisation studies (chemical constituents) and their influence on spontaneous combustion susceptibility. (2) Test methods to assess the susceptibility of a coal sample to spontaneous combustion. This is followed by a critical literature review that summarises previous research with special emphasis given to Indian coals

    Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling

    Get PDF
    This paper was published in the journal Polymer Testing and the definitive published version is available at http://dx.doi.org/10.1016/j.polymertesting.2016.12.016.© 2016 Elsevier LtdAn experimental study of temperature-dependent mechanical behaviour of Poly-methyl methacrylate (PMMA) was performed at a range of temperatures (20 °C, 40 °C, 60 °C and 80 °C) below its glass transition point (108 °C) under uniaxial tension and three-point bending loading conditions. This study was accompanied by simulations aimed at identification of material parameters for two different constitutive material models. Experimental flow curves obtained for PMMA were used in elasto-plastic analysis, while a sim-flow optimization tool was employed for a two-layer viscoplasticity model. The temperature increase significantly affected mechanical behaviour of PMMA, with quasi-brittle fracture at room temperature and super-plastic behaviour (ε>110%) at 80 °C. The two-layer viscoplasticity material model was found to agree better with the experimental data obtained for uniaxial tension than the elasto-plastic description
    corecore