123 research outputs found
Experimental Analysis of Friction Stir Welding of Dissimilar Aluminium Alloys by Machine Learning
This research focusses on joining of dissimilar materials on AA5083 and AA6082 using friction stir welding process. Tool rotation speed, welding speed and tool tilt angle are optimized using L27 Orthogonal design of experiments with tensile strength as the response. To evaluate potential of sophisticated machine learning methodologies, random forest regressor and artificial neural network algorithms are utilized for predicting the joint strength of friction stir welded dissimilar plates of AA5083 and AA6082. These models are used to investigate discrepancies between experimental and predicted results. Of the available results, 21 readings are chosen for training the model while remaining are used for testing the model. Random forest regressor and artificial neural network techniques were formed using the data associated with the experiment. Moreover, results of the analysis of variances are compared to the machine learning predicted results to determine the variances
Avian Influenza H9N2 Seroprevalence among Poultry Workers in Pune, India, 2010
Avian influenza (AI) H9N2 has been reported from poultry in India. A seroepidemiological study was undertaken among poultry workers to understand the prevalence of antibodies against AI H9N2 in Pune, Maharashtra, India. A total of 338 poultry workers were sampled. Serum samples were tested for presence of antibodies against AI H9N2 virus by hemagglutination inhibition (HI) and microneutralization (MN) assays. A total of 249 baseline sera from general population from Pune were tested for antibodies against AI H9N2 and were negative by HI assay using ≥40 cut-off antibody titre. Overall 21 subjects (21/338 = 6.2%) were positive for antibodies against AI H9N2 by either HI or MN assays using ≥40 cut-off antibody titre. A total of 4.7% and 3.8% poultry workers were positive for antibodies against AI H9N2 by HI and MN assay respectively using 40 as cut-off antibody titre. This is the first report of seroprevalence of antibodies against AI H9N2 among poultry workers in India
Recommended from our members
Leukemogenesis Induced by an Activating β-catenin mutation in Osteoblasts
Cells of the osteoblast lineage affect homing, 1, 2 number of long term repopulating hematopoietic stem cells (HSCs) 3, 4, HSC mobilization and lineage determination and B lymphopoiesis 5-8. More recently osteoblasts were implicated in pre-leukemic conditions in mice 9, 10. Yet, it has not been shown that a single genetic event taking place in osteoblasts can induce leukemogenesis. We show here that in mice, an activating mutation of β-catenin in osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukemia (AML) with common chromosomal aberrations and cell autonomous progression. Activated β- catenin stimulates expression of the Notch ligand Jagged-1 in osteoblasts. Subsequent activation of Notch signaling in HSC progenitors induces the malignant changes. Demonstrating the pathogenetic role of the Notch pathway, genetic or pharmacological inhibition of Notch signaling ameliorates AML. Nuclear accumulation and increased β-catenin signaling in osteoblasts was also identified in 38% of patients with MDS/AML. These patients showed increased Notch signaling in hematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce AML, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to AML
Mitogen- and Stress-Activated Kinase 1 (MSK1) Regulates Cigarette Smoke-Induced Histone Modifications on NF-κB-dependent Genes
Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro-inflammatory gene transcription by chromatin modifications; however, the underlying role of downstream signaling kinase is not known. Mitogen- and stress-activated kinase 1 (MSK1) serves as a specific downstream NF-κB RelA/p65 kinase, mediating transcriptional activation of NF-κB-dependent pro-inflammatory genes. The role of MSK1 in nuclear signaling and chromatin modifications is not known, particularly in response to environmental stimuli. We hypothesized that MSK1 regulates chromatin modifications of pro-inflammatory gene promoters in response to CS. Here, we report that CS extract activates MSK1 in human lung epithelial (H292 and BEAS-2B) cell lines, human primary small airway epithelial cells (SAEC), and in mouse lung, resulting in phosphorylation of nuclear MSK1 (Thr581), phospho-acetylation of RelA/p65 at Ser276 and Lys310 respectively. This event was associated with phospho-acetylation of histone H3 (Ser10/Lys9) and acetylation of histone H4 (Lys12). MSK1 N- and C-terminal kinase-dead mutants, MSK1 siRNA-mediated knock-down in transiently transfected H292 cells, and MSK1 stable knock-down mouse embryonic fibroblasts significantly reduced CS extract-induced MSK1, NF-κB RelA/p65 activation, and posttranslational modifications of histones. CS extract/CS promotes the direct interaction of MSK1 with RelA/p65 and p300 in epithelial cells and in mouse lung. Furthermore, CS-mediated recruitment of MSK1 and its substrates to the promoters of NF-κB-dependent pro-inflammatory genes leads to transcriptional activation, as determined by chromatin immunoprecipitation. Thus, MSK1 is an important downstream kinase involved in CS-induced NF-κB activation and chromatin modifications, which have implications in pathogenesis of COPD
Plastome-wide rearrangements and gene losses in carnivorous Droseraceae
The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses and large expansions or contractions of the inverted repeat. All the ndh genes are lost or non-functional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes. Uniquely amongst land plants, the trnK gene has no intron. Carnivory in the Droseraceae coincides with changes in plastid gene content similar to those induced by parasitism and mycoheterotrophy, suggesting parallel changes in chloroplast function due to the similar switch from autotrophy to (mixo-) heterotrophy. A molecular phylogeny of the taxa based on all shared plastid genes indicates that the ‘snap-traps’ of Aldrovanda and Dionaea have a common origin
Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing
<p>Abstract</p> <p>Background</p> <p>Milkweeds (<it>Asclepias </it>L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (<it>Asclepias syriaca </it>L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing <it>A. syriaca </it>as a model in ecology and evolution.</p> <p>Results</p> <p>A 0.5× genome of <it>A. syriaca </it>was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: <it>accD, clpP</it>, and <it>ycf1</it>. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/<it>copia</it>-like retroelements are the most common repeat type in the milkweed genome. At least one <it>A. syriaca </it>microread hit 88% of <it>Catharanthus roseus </it>(Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the <it>A. syriaca </it>genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed.</p> <p>Conclusions</p> <p>The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and <it>A. syriaca </it>in particular, as ecological and evolutionary models.</p
Transcriptomics Comparison between Porcine Adipose and Bone Marrow Mesenchymal Stem Cells during In Vitro Osteogenic and Adipogenic Differentiation
Bone-marrow mesenchymal stem cells (BMSC) are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC). The abundance and ease of harvest make the adipose-derived stem cells (ASC) an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition, functional analysis data might indicate differences in therapeutic application
The evolution of the plastid chromosome in land plants: gene content, gene order, gene function
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable
The mediating effects of first call resolution on call centers’ performance
This article aims to examine and validate the prepositions of the mediating impacts of first call resolution (FCR) on caller satisfaction within the contact center industry.A survey of 168 call center managers was analyzed through structural equation modeling, constituting an overall 43.3 per cent response rate for this study.The results show that FCR positively mediates the relationship between knowledge management, technology-based CRM and caller satisfaction within the inbound customer contact centers.We have empirically assessed call centers/contact centers’ success through caller satisfaction (an observed variable through their 2009 customer survey in Malaysia).Consequently, this study cannot generalize its findings in all other countries.Our strong argument is that within the operational variables, FCR is statistically significant and positively mediates knowledge management applications. But very important to note is that the customer contact centers are first touch points to a company's goods or services, and that many other factors such as product quality, company policy, target markets, decision-making processes and so on are also determinants of caller satisfaction, but fall outside the operational control of contact center activities.This research has empirically established that a company's capability in effectively acquiring a valid understanding of its current and potential customers’ information through CRM technologies will positively impact its acquisitions, customization, management and retention of customers.It also avails both the academic and contact center management the benefits that are inherent in measuring the impact of knowledge management and technology-based CRM on inbound FCR and caller satisfaction.This study finally recommends alternative areas for future research
Cytoplasmic diversity of Brassica napus L., Brassica oleracea L. and Brassica rapa L. as determined by chloroplast microsatellite markers
- …
