84 research outputs found

    On scaling fields in ZNZ_N Ising models

    Full text link
    We study the space of scaling fields in the ZNZ_N symmetric models with the factorized scattering and propose simplest algebraic relations between form factors induced by the action of deformed parafermionic currents. The construction gives a new free field representation for form factors of perturbed Virasoro algebra primary fields, which are parafermionic algebra descendants. We find exact vacuum expectation values of physically important fields and study correlation functions of order and disorder fields in the form factor and CFT perturbation approaches.Comment: 2 Figures, jetpl.cl

    Renormalization group trajectories from resonance factorized S-matrices

    Full text link
    We propose and investigate a large class of models possessing resonance factorized S-matrices. The associated Casimir energy describes a rich pattern of renormalization group trajectories related to flows in the coset models based on the simply laced Lie Algebras. From a simplest resonance S-matrix, satisfying the ``Ï•3\phi^3-property'', we predict new flows in non-unitary minimal models.Comment: (7 pages) (no figures included

    The cost of mitigation revisited

    Get PDF
    Estimates of economic implications of climate policy are important inputs into policy-making. Despite care to contextualize quantitative assessments of mitigation costs, one strong view outside academic climate economics is that achieving Paris Agreement goals implies sizable macroeconomic losses. Here, we argue that this notion results from unwarranted simplification or omission of the complexities of quantifying mitigation costs, which generates ambiguity in communication and interpretation. We synthesize key factors influencing mitigation cost estimates to guide interpretation of estimates, for example from the Intergovernmental Panel on Climate Change, and suggest ways to improve the underlying models. We propose alternatives for the scenario design framework, the framing of mitigation costs and the methods used to derive them, to better inform public debate and policy

    Jorge A. Swieca's contributions to quantum field theory in the 60s and 70s and their relevance in present research

    Full text link
    After revisiting some high points of particle physics and QFT of the two decades from 1960 to 1980, I comment on the work by Jorge Andre Swieca. I explain how it fits into the quantum field theory during these two decades and draw attention to its relevance to the ongoing particle physics research. A particular aim of this article is to direct thr readers mindfulness to the relevance of what at the time of Swieca was called "the Schwinger Higgs screening mechanism". which, together with recent ideas which generalize the concept of gauge theories, has all the ingredients to revolutionize the issue of gauge theories and the standard model.Comment: 49 pages, expansion and actualization of text, improvement of formulations and addition of many references to be published in EPJH - Historical Perspectives on Contemporary Physic

    Quantum symmetry algebras of spin systems related to Temperley-Lieb R-matrices

    Full text link
    A reducible representation of the Temperley-Lieb algebra is constructed on the tensor product of n-dimensional spaces. One obtains as a centraliser of this action a quantum algebra (a quasi-triangular Hopf algebra) U_q with a representation ring equivalent to the representation ring of the sl_2 Lie algebra. This algebra U_q is the symmetry algebra of the corresponding open spin chain.Comment: 14 pages LaTex; typos corrected and two references adde

    Integrable sigma models with theta=pi

    Full text link
    A fundamental result relevant to spin chains and two-dimensional disordered systems is that the sphere sigma model with instanton coupling theta=pi has a non-trivial low-energy fixed point and a gapless spectrum. This result is extended to two series of sigma models with theta=pi: the SU(N)/SO(N) sigma models flow to the SU(N)_1 WZW theory, while the O(2N)/O(N)\times O(N) models flow to O(2N)_1 (2N free Majorana fermions). These models are integrable, and the exact quasiparticle spectra and S matrices are found. One interesting feature is that charges fractionalize when theta=pi. I compute the energy in a background field, and verify that the perturbative expansions for \theta=0 and pi are the same as they must be. I discuss the flows between the two sequences of models, and also argue that the analogous sigma models with Sp(2N) symmetry, the Sp(2N)/U(N) models, flow to Sp(2N)_1.Comment: 31 pages, 2 figures. v2: corrects many typos. v3: corrects more typos, adds referenc

    Turnover of BRCA1 Involves in Radiation-Induced Apoptosis

    Get PDF
    Background: Germ-line mutations of the breast cancer susceptibility gene-1 (BRCA1) increase the susceptibility to tumorigenesis. The function of BRCA1 is to regulate critical cellular processes, including cell cycle progression, genomic integrity, and apoptosis. Studies on the regulation of BRCA1 have focused intensely on transcription and phosphorylation mechanisms. Proteolytic regulation of BRCA1 in response to stress signaling remains largely unknown. The manuscript identified a novel mechanism by which BRCA1 is regulated by the ubiquitin-dependent degradation in response to ionization. Methodology/Principal Findings: Here, we report that severe ionization triggers rapid degradation of BRCA1, which in turn results in the activation of apoptosis. Ionization-induced BRCA1 turnover is mediated via an ubiquitin-proteasomal pathway. The stabilization of BRCA1 significantly delays the onset of ionization-induced apoptosis. We have mapped the essential region on BRCA1, which mediates its proteolysis in response to ionization. Moreover, we have demonstrated that BRCA1 protein is most sensitive to degradation when ionization occurs during G2/M and S phase. Conclusions/Significance: Our results suggest that ubiquitin-proteasome plays an important role in regulating BRCA1 during genotoxic stress. Proteolytic regulation of BRCA1 involves in ionization-induced apoptosis. © 2010 Liu et al

    Biodegradable Thermosensitive Hydrogel for SAHA and DDP Delivery: Therapeutic Effects on Oral Squamous Cell Carcinoma Xenografts

    Get PDF
    Background: OSCC is one of the most common malignancies and numerous clinical agents currently applied in combinative chemotherapy. Here we reported a novel therapeutic strategy, SAHA and DDP-loaded PECE (SAHA-DDP/PECE), can improve the therapeutic effects of intratumorally chemotherapy on OSCC cell xenografts. Objective/Purpose: The objective of this study was to evaluate the therapeutic efficacy of the SAHA-DDP/PECE in situ controlled drug delivery system on OSCC cell xenografts. Methods: A biodegradable and thermosensitive hydrogel was successfully developed to load SAHA and DDP. Tumorbeared mice were intratumorally administered with SAHA-DDP/PECE at 50 mg/kg (SAHA) +2 mg/kg (DDP) in 100 ul PECE hydrogel every two weeks, SAHA-DDP at 50 mg/kg(SAHA) +2 mg/kg(DDP) in NS, 2 mg/kg DDP solution, 50 mg/kg SAHA solution, equal volume of PECE hydrogel, or equal volume of NS on the same schedule, respectively. The antineoplastic actions of SAHA and DDP alone and in combination were evaluated using the determination of tumor volume, immunohistochemistry, western blot, and TUNEL analysis. Results: The hydrogel system was a free-flowing sol at 10uC, become gel at body temperature, and could sustain more than 14 days in situ. SAHA-DDP/PECE was subsequently injected into tumor OSCC tumor-beared mice. The results demonstrated that such a strategy as this allows the carrier system to show a sustained release of SAHA and DDP in vivo, and coul
    • …
    corecore