691 research outputs found

    Multiphoton radiative recombination of electron assisted by laser field

    Get PDF
    In the presence of an intensive laser field the radiative recombination of the continuum electron into an atomic bound state generally is accompanied by absorption or emission of several laser quanta. The spectrum of emitted photons represents an equidistant pattern with the spacing equal to the laser frequency. The distribution of intensities in this spectrum is studied employing the Keldysh-type approximation, i.e. neglecting interaction of the impact electron with the atomic core in the initial continuum state. Within the adiabatic approximation the scale of emitted photon frequencies is subdivided into classically allowed and classically forbidden domains. The highest intensities correspond to emission frequencies close to the edges of classically allowed domain. The total cross section of electron recombination summed over all emitted photon channels exhibits negligible dependence on the laser field intensity.Comment: 14 pages, 5 figures (Figs.2-5 have "a" and "b" parts), Phys.Rev.A accepted for publication. Fig.2b is presented correctl

    Outcome of ACHD patients with non-inducible versus inducible IART undergoing cavo-tricuspid isthmus ablation: the role of empiric ablation

    Get PDF
    Purpose: Catheter ablation for supraventricular tachycardia (SVT) in adults with congenital heart disease (ACHD) is an important therapeutic option. Cavo-tricuspid isthmus (CTI)-dependent intraatrial re-entrant tachycardia (IART) is common. However, induction of sustained tachycardia at the time of ablation is not always possible. We hypothesised that performing an empiric CTI line in case of non-inducibility leads to good outcomes. Long-term outcomes of empiric versus entrained CTI ablation in ACHD patients were examined. / Methods: Retrospective, single-centre, case-control study over 7 years. Arrhythmia-free survival after empiric versus entrained CTI ablation was compared. / Results: Eighty-seven CTI ablations were performed in 85 ACHD patients between 2010 and 2017. The mean age of the cohort was 43 years and 48% were male. Underlying aetiology included ASD (31%), VSD (11.4%), AVSD (9.1%), AVR (4.8%), Fallot’s (18.4%), Ebstein’s (2.3%), Fontan’s palliation (9.2%) and atrial switch (13.8%). CTI-dependent IART was entrained in 59 patients whereas it was non-inducible in 28. The latter had an empiric CTI ablation. Forty-three percent of procedures were performed under general anaesthesia. There were no reported procedural complications. There was no significant difference in the mean procedure or fluoroscopy times between the groups (empiric vs entrained CTI; 169.1 vs 183.3 and 28.1 vs 19.9 min). Arrhythmia-free survival was 64.3% versus 72.8% (p value 0.44) in the empiric and entrained groups at 21 months follow-up. / Conclusions: Long-term outcomes after empiric and entrained CTI ablation for IART in ACHD patients are comparable. This is a safe and effective therapeutic option. In the case of non-inducibility of IART, an empiric CTI line should be considered in this cohort

    Broadband velocity modulation spectroscopy of HfF^+: towards a measurement of the electron electric dipole moment

    Get PDF
    Precision spectroscopy of trapped HfF^+ will be used in a search for the permanent electric dipole moment of the electron (eEDM). While this dipole moment has yet to be observed, various extensions to the standard model of particle physics (such as supersymmetry) predict values that are close to the current limit. We present extensive survey spectroscopy of 19 bands covering nearly 5000 cm^(-1) using both frequency-comb and single-frequency laser velocity-modulation spectroscopy. We obtain high-precision rovibrational constants for eight electronic states including those that will be necessary for state preparation and readout in an actual eEDM experiment.Comment: 13 pages, 7 figures, 3 table

    An Experimental Investigation of Colonel Blotto Games

    Get PDF
    "This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a battlefield is deterministic, disadvantaged players use a 'guerilla warfare' strategy which stochastically allocates zero resources to a subset of battlefields. Advantaged players employ a 'stochastic complete coverage' strategy, allocating random, but positive, resource levels across the battlefields. In the lottery treatment, where winning a battlefield is probabilistic, both players divide their resources equally across all battlefields." (author's abstract)"Dieser Artikel untersucht das Verhalten von Individuen in einem 'constant-sum Colonel Blotto'-Spiel zwischen zwei Spielern, bei dem die Spieler mit unterschiedlichen Ressourcen ausgestattet sind und die erwartete Anzahl gewonnener Schlachtfelder maximieren. Die experimentellen Ergebnisse bestätigen alle wichtigen theoretischen Vorhersagen. Im Durchgang, in dem wie in einer Auktion der Sieg in einem Schlachtfeld deterministisch ist, wenden die Spieler, die sich im Nachteil befinden, eine 'Guerillataktik' an, und verteilen ihre Ressourcen stochastisch auf eine Teilmenge der Schlachtfelder. Spieler mit einem Vorteil verwenden eine Strategie der 'stochastischen vollständigen Abdeckung', indem sie zufällig eine positive Ressourcenmenge auf allen Schlachtfeldern positionieren. Im Durchgang, in dem sich der Gewinn eines Schlachtfeldes probabilistisch wie in einer Lotterie bestimmt, teilen beide Spieler ihre Ressourcen gleichmäßig auf alle Schlachtfelder auf." (Autorenreferat

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take
    • …
    corecore