7,622 research outputs found

    Resonant tunneling of interacting electrons in a one-dimensional wire

    Full text link
    We consider the conductance of a one-dimensional wire interrupted by a double-barrier structure allowing for a resonant level. Using the electron-electron interaction strength as a small parameter, we are able to build a non-perturbative analytical theory of the conductance valid in a broad region of temperatures and for a variety of the barrier parameters. We find that the conductance may have a non-monotonic crossover dependence on temperature, specific for a resonant tunneling in an interacting electron system.Comment: 4 pages. 2 figure

    Electromagnetic field induced suppression of transport through nn-pp junctions in graphene

    Full text link
    We study quasi-particle transmission through an nn -pp junction in a graphene irradiated by an electromagnetic field (EF). In the absence of EF the electronic spectrum of undoped graphene is gapless, and one may expect the perfect transmission of quasi-particles flowing perpendicular to the junction. We demonstrate that the resonant interaction of propagating quasi-particles with the component of EF parallel to the junction induces a \textit{non-equilibrium dynamic gap} (2ΔR)(2\Delta_R) between electron and hole bands in the quasi-particle spectrum of graphene. In this case the strongly suppressed quasi-particle transmission is only possible due to interband tunnelling. The effect may be used for controlling transport properties of diverse structures in graphene, like, e.g., nn-pp-nn transistors, single electron transistors, quantum dots, etc., by variation of the intensity SS and frequency ω\omega of the external radiation.Comment: 5 pages, 3 figure

    Climate Modeling of a Potential ExoVenus

    Get PDF
    The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere may be a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exoVenus. Here we discuss the planetary parameters of Kepler-1649b with relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions towards a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSpec) capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs.Comment: 11 pages, 4 figures, 1 table, accepted for publication in the Astrophysical Journal. The data from this paper are open source and are available from the following data portals: https://portal.nccs.nasa.gov/GISS_modelE/ROCKE-3D/Climate_Modeling_of_a_Potential_ExoVenus https://archive.org/details/Climate_Modeling_of_a_Potential_ExoVenu

    Is there a renormalization of the 1D conductance in Luttinger Liquid model?

    Full text link
    Properties of 1D transport strongly depend on the proper choice of boundary conditions. It has been frequently stated that the Luttinger Liquid (LL) conductance is renormalized by the interaction as ge2hg \frac{e^2} {h} . To contest this result I develop a model of 1D LL wire with the interaction switching off at the infinities. Its solution shows that there is no renormalization of the universal conductance while the electrons have a free behavior in the source and drain reservoirs.Comment: 5 pages, RevTex 2.0, attempted repair of tex error

    Analysis of heavy spin--3/2 baryon--heavy spin--1/2 baryon--light vector meson vertices in QCD

    Get PDF
    The heavy spin--3/2 baryon--heavy spin--1/2 baryon vertices with light vector mesons are studied within the light cone QCD sum rules method. These vertices are parametrized in terms of three coupling constants. These couplings are calculated for all possible transitions. It is shown that correlation functions for these transitions are described by only one invariant function for every Lorenz structure. The obtained relations between the correlation functions of the different transitions are structure independent while explicit expressions of invariant functions depend on the Lorenz structure.Comment: 17 Pages, 6 Figures and 4 Table

    Higgs Boson Decays to tau-pairs in the s-channel at a Muon Collider

    Full text link
    We study the observability of the \tautau decay mode of a Higgs boson produced in the ss-channel at a muon collider. We find that the spin correlations of the \tautau in τπντ,ρντ\tau\to \pi\nu_{\tau}, \rho\nu_{\tau} decays are discriminative between the Higgs boson signal and the Standard Model background. Observation of the predicted distinctive distribution can confirm the spin-0 nature of the Higgs resonance. The relative coupling strength of the Higgs boson to bb and τ\tau can also be experimentally determined.Comment: to appear in PL

    Dynamic coexistence of various configurations: clusters vs.nuclei

    Full text link
    The presence of energy shells in metallic clusters and atomic nuclei leads to a peculiar relation between the number of particles N and the structure, and this leads to a strong correlation between the energy spectrum and N. An analysis of experimental data leads to the conclusion that, in addition to the static Jahn-Teller effect, the dynamic effect leading to the quantum coexistence of different configurations (quantum oscillations) plays an important role. Such suggested coexistence is an essential feature of clusters as well as nuclei, both finite Fermi systems.Comment: 6 pages, 2 figure

    Self-duality in quantum impurity problems

    Full text link
    We establish the existence of an exact non-perturbative self-duality in a variety of quantum impurity problems, including the Luttinger liquid or quantum wire with impurity. The former is realized in the fractional quantum Hall effect, where the duality interchanges electrons with Laughlin quasiparticles. We discuss the mathematical structure underlying this property, which bears an intriguing resemblance with the work of Seiberg and Witten on supersymmetric non-abelian gauge theory.Comment: 4 page

    Impurity Scattering in Luttinger Liquid with Electron-Phonon Coupling

    Get PDF
    We study the influence of electron-phonon coupling on electron transport through a Luttinger liquid with an embedded weak scatterer or weak link. We derive the renormalization group (RG) equations which indicate that the directions of RG flows can change upon varying either the relative strength of the electron-electron and electron-phonon coupling or the ratio of Fermi to sound velocities. This results in the rich phase diagram with up to three fixed points: an unstable one with a finite value of conductance and two stable ones, corresponding to an ideal metal or insulator.Comment: 4 pages, 2 figure

    The Fractional Quantum Hall effect in an array of quantum wires

    Full text link
    We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire electron hopping processes that drive the system into a variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any QH state is the groundstate of a Hamiltonian that we explicitly construct.Comment: Revtex, 4 pages, 2 figure
    corecore