138 research outputs found

    Problems and causes of marginal nutrient availability in winery wastewater treatment

    Get PDF
    Winery wastewater treatment plants generally face severe nutrient deficiency, and therefore conventional technologies and supplementary nutrient dosing strategies may fail. The purpose of the paper is to show how traditional way of dosing N-source for marginal availability to nutrient deficient influents results in poorly settling activated sludge regardless of the application of aerated or non-aerated selectors. External N-source calculated for marginal availability resulted in nutrient deficiency due to the relatively high yield experienced (0.7 g biomass COD/g substrate COD). In the fully aerated system with overall N-deficiency, rapidly increasing overproduction of extracellular polysaccharide was experienced, leading to SVI (Sludge Volume Index) values up to 600 cm3 g−1. In the system with the non-aerated selector, initial nutrient deficiency could only be detected in the second reactor. Since neither overgrowth of floc-forming GAOs (Glycogen Accumulating Organisms) nor denitrification could be experienced, the non-aerated reactor operated as low-DO (Dissolved Oxygen) basin, attributing to the drastic overgrowth of filamentous bacteria leading to SVI values >1000 cm3 g−1. Since dosing external N-source for marginal availability is likely to cause severe biomass separability problems in activated sludge winery wastewater treatment, either pronounced N-overdosing and pre-denitrification or severe nutrient deficiency and GAO cultivation can rather be recommended

    The dynamics of cultivation and floods in arable lands of Central Argentina

    Get PDF
    Although floods in watersheds have been associated with land-use change since ancient times, the dynamics of flooding is still incompletely understood. In this paper we explored the relations between rainfall, groundwater level, and cultivation to explain the dynamics of floods in the extremely flat and valuable arable lands of the Quinto river watershed, in central Argentina. The analysis involved an area of 12.4 million hectare during a 26-year period (1978–2003), which comprised two extensive flooding episodes in 1983–1988 and 1996–2003. Supported by information from surveys as well as field and remote sensing measurements, we explored the correlation among precipitation, groundwater levels, flooded area and land use. Flood extension was associated to the dynamics of groundwater level. While no correlation with rainfall was recorded in lowlands, a significant correlation (<i>P</i><0.01) between groundwater and rainfall in highlands was found when estimations comprise a time lag of one year. Correlations between groundwater level and flood extension were positive in all cases, but while highly significant relations (<i>P</i><0.01) were found in highlands, non significant relations (<i>P</i>>0.05) predominate in lowlands. Our analysis supports the existence of a cyclic mechanism driven by the reciprocal influence between cultivation and groundwater in highlands. This cycle would involve the following stages: (a) cultivation boosts the elevation of groundwater levels through decreased evapotranspiration; (b) as groundwater level rises, floods spread causing a decline of land cultivation; (c) flooding propitiates higher evapotranspiration favouring its own retraction; (d) cultivation expands again following the retreat of floods. Thus, cultivation would trigger a destabilizing feedback self affecting future cultivation in the highlands. It is unlikely that such sequence can work in lowlands. The results suggest that rather than responding directly and solely to the same mechanism, floods in lowlands may be the combined result of various factors like local rainfall, groundwater level fluctuations, surface and subsurface lateral flow, and water-body interlinking. Although the hypothetical mechanisms proposed here require additional understanding efforts, they suggest a promising avenue of environmental management in which cultivation could be steered in the region to smooth the undesirable impacts of floods

    Hydrological and productive impacts of recent land-use and land-cover changes in the semiarid Chaco: Understanding novel water excess in water scarce farmlands

    Get PDF
    Over the last decades, the rapid replacement of native forests by crops and pastures in the Argentinean semiarid Chaco plains has triggered unprecedented groundwater level raises resulting from deep drainage increases, leading to the first massive waterlogging event on records (~25,000 Ha flooded in 2015 near Bandera, one of the most cultivated clusters of the Chaco). In this paper, we link this episode to the ongoing deforestation and cropping scheme shifts through the combined analysis of remote sensing data, agricultural surveys, local farmer information and hydrologic modelling. From 2000 to 2015, the agricultural area of Bandera increased from 21% to 50%, mostly at the expense of dry forests. In this period, agriculture migrated from more intensive (i.e., double-cropping) to more water-conservative (i.e., late-summer single crops) schemes as a general strategy to reduce drought risks. These changes reduced regional evapotranspiration and increased the intensity of deep drainage in wet years. Contrasting cropping schemes displayed significant evapotranspiration differences, but all of them experienced substantial drainage losses (~100–200 mm) during the wettest year (2014/2015), suggesting that cropping adjustments have a limited capacity to halt the generation of water excesses. Nearly 50% of the cropped area in Bandera could not be sown or harvested following the groundwater recharge event of 2014/2015. In the ongoing context of shallow and rising water tables, the introduction of novel cropping schemes that include deep-rooted perennials, to promote transpirative groundwater discharge, seems crucial to avoid the recurrence of water excesses and their associated dryland salinity risk in the region.Fil: GimĂ©nez, RaĂșl. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Mercau, Jorge Luis. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro Regional La Pampa-San Luis. EstaciĂłn Experimental Agropecuaria San Luis. Agencia de ExtensiĂłn Rural San Luis; ArgentinaFil: Bert, Federico Esteban. Universidad de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂ­a; ArgentinaFil: Kuppel, Sylvain. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Centre National de la Recherche Scientifique; Francia. University of Aberdeen; Reino UnidoFil: Baldi, GermĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico MatemĂĄticas y Naturales. Departamento de GeologĂ­a; ArgentinaFil: Houspanossian, Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico MatemĂĄticas y Naturales. Departamento de GeologĂ­a; ArgentinaFil: Magliano, Patricio NicolĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Departamento de BioquĂ­mica y Ciencias BiolĂłgicas; ArgentinaFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentin

    Viscous and filamentous bulking in activated sludge: Rheological and hydrodynamic modelling based on experimental data

    Get PDF
    Although achieving good activated sludge settleability is a key requirement for meeting effluent quality criteria, wastewater treatment plants often face undesired floc structure changes. Filamentous bulking has widely been studied, however, viscous sludge formation much less investigated so far. Our main goal was to find relationship between sludge floc structure and related rheological properties, moreover, to estimate pressure loss in pipe networks through hydrodynamic modelling of the non-Newtonian flows in case of well settling (ideal-like), viscous and filamentous sludge. Severe viscous and filamentous kinds of bulking were generated separately in continuous-flow lab-scale systems initially seeded with the same reference (ideal-like) biomass and the entire evolution of viscous and filamentous bulking was monitored. The results suggested correlation between the rheological properties and the floc structure transformations, and showed the most appropriate fit for the Herschel-Bulkley model (vs. Power-law and Bingham). Validated computational fluid dynamics studies estimated the pipe pressure loss in a wide Reynolds number range for the initial well settling (reference) and the final viscous and filamentous sludge as well. A practical standard modelling protocol was developed for improving energy efficiency of sludge pumping in different floc structure scenarios

    Contrasting CO2 and water vapour fluxes in dry forest and pasture sites of central Argentina

    Get PDF
    The dry forests of South America are a key player of the global carbon cycle and the regional water cycle, but they are being intensively deforested. We used eddy covariance measurements to compare the temporal patterns of CO2 and water vapour fluxes and their relationships with environmental variables in dry forest and pastures sites of central Argentina. Ecosystem fluxes showed clear contrasts in magnitude, timing and response to environmental controls between ecosystems. The dry forest displayed higher daily gross primary productivity (GPP, 10.6 vs. 7.8 g CO2 m−2 d−1) and ecosystem respiration (Reco, 9.1 vs. 7.0 g CO2 m−2 d−1) and lower net ecosystem exchange (NEE, −1.5 vs. −0.7 g CO2 m−2 d−1) than the pasture. These differences were explained by a lower tolerance of the pasture to cool temperatures and drought. The lowest NEE rates were observed between 26°C and 34°C in the pasture, but below this range, NEE increased sharply, switching to a carbon source with temperatures <20°C. By contrast, the dry forest remained as a strong carbon sink down to 18°C. The pasture also showed a stronger drop of GPP with drought compared with the dry forest, becoming a carbon source with soil wetness <25% of soil available water. Rainfall was strongly coupled with GPP in both ecosystems, but the dry forest responded to longer rainfall integration periods. This study helps to understand how ecosystems can respond to climate change, improve global scale modelling and increase the productivity and resilience of rangelands.Fil: Nosetto, Marcelo Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Luna Toledo, Emanuel Santiago. Instituto Nacional de TecnologĂ­a Agropecuaria; Argentina. Universidad Nacional de Chilecito; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Magliano, Patricio NicolĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Figuerola, Patricia Irene. Universidad Nacional de Chilecito; ArgentinaFil: Blanco, Lisandro Javier. Instituto Nacional de TecnologĂ­a Agropecuaria; ArgentinaFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias FĂ­sico, MatemĂĄticas y Naturales. Instituto de MatemĂĄtica Aplicada de San Luis "Prof. Ezio Marchi"; Argentin

    Environmental Determinants of the Distribution and Abundance of the Ants, Lasiophanes picinus and L. valdiviensis, in Argentina

    Get PDF
    The distribution and abundance variation of the terrestrial ants, Lasiophanes picinus and Lasiophanes valdiviensis Emery (Formicinae: Lasiini), which are endemic in Patagonia (Argentina and Chile), are described and a set of environmental factors are examined to explain the observed patterns. Ants were collected using 450 pitfall traps arranged in 50, 100 m2 grid plots each with nine traps within a roughly 150 × 150 km area representative of the subantartic-patagonian transition of Argentina. Five sampling periods each 8-days long were carried out between November 2004 and March 2006. To understand the distributional patterns and their link to environmental variables discriminant analysis was used. Path analysis was performed to test for direct and indirect effects of a set of environmental variables on species abundance variation. L. picinus was more frequently captured and attained higher abundance in the forests, while L. valdiviensis was more frequently captured and more abundant in the scrubs. The maximum daily temperature and mean annual precipitation explained L. picinus distribution (i.e. presence or absence) with an accuracy of 90%. L. valdiviensis distribution was predicted with almost 70% accuracy, taking into account herbal richness. The maximum daily temperature was the only climatic variable that affected ant abundance directly; an increase in temperature led to an increase of L. picinus abundance and a decrease of L. valdiviensis abundance. The amount of resources, as indicated by the percent plant cover, explained the variation of the abundance of both species better than the variety of resources as indicated by plant richness (i.e. models including plant richness had low fit or no fit at all). A direct effect of habitat use by cattle was found, as indicated by the amount of feces in the plots, only when variables related to the amount of resources were replaced by variables with less explanatory power related to the variety of resources. This study provides new data on the ecology of Lasiophanes species in relation to existing hypotheses proposed to explain patterns of abundance variation. Evidence is provided that changes in temperature (i.e. global climate change) may have important consequences on populations of these species
    • 

    corecore