23,799 research outputs found

    Thermal analyses of a materials processing furnace being developed for use with heat pipes

    Get PDF
    A special materials processing furnace is being developed for the forthcoming Spacelab missions to study the solidification under closely controlled conditions of various sample materials in the absence of gravity. The samples are to be rod shaped and subjected to both heating and cooling simultaneously. The thermal model is based on a developed Thermal Analyzer computer program. The model was developed to be very general to enable the simulation of variations in the furnace design and, hence, serve as an aid in finalizing the design. The thermal model is described and a user's guide given. Some preliminary results obtained in testing the model are also given

    The introduction of a surgical safety checklist in a tertiary referral obstetric centre

    Get PDF
    Background: Surgery-related adverse events remain a significant and often under-reported problem. In a recent study, the introduction of a perioperative checklist by the WHO reduced deaths and complications by 46% and 36% respectively. The authors wished to evaluate the introduction of a surgical safety checklist in a busy obstetric tertiary referral centre by assessing staff attitudes, checklist compliance and effects upon patients. Methods: A questionnaire-based assessment was performed on staff working in obstetric theatres before and after the introduction of the surgical safety checklist. Checklist compliance was assessed at 3 months and 1 year. Patients were asked questions relating to the performance of the surgical safety checklist in order to evaluate any anxiety caused. Results: Non-medical staff were significantly more likely than medical staff to feel familiar with other team members both before (p<0.001) and after (

    Primary propulsion/large space system interaction study

    Get PDF
    An interaction study was conducted between propulsion systems and large space structures to determine the effect of low thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS). The LSS which were considered would be deployed from the space shuttle orbiter bay in low Earth orbit, then transferred to geosynchronous equatorial orbit by their own propulsion systems. The types of structures studied were the expandable box truss, hoop and column, and wrap radial rib each with various surface mesh densities. The impact of the acceleration forces on system sizing was determined and the effects of single point, multipoint, and transient thrust applications were examined. Orbit transfer strategies were analyzed to determine the required velocity increment, burn time, trip time, and payload capability over a range of final acceleration levels. Variables considered were number of perigee burns, delivered specific impulse, and constant thrust and constant acceleration modes of propulsion. Propulsion stages were sized for four propellant combinations; oxygen/hydrogen, oxygen/methane, oxygen/kerosene, and nitrogen tetroxide/monomethylhydrazine, for pump fed and pressure fed engine systems. Two types of tankage configurations were evaluated, minimum length to maximize available payload volume and maximum performance to maximize available payload mass

    Living lab methodology as an assessment tool for mass customization

    Get PDF
    Mass customization has been regularly used as a growth strategy during the last decades. The strength of this approach stems from offering products adjusted to customers' individual needs, resulting in added value. The latter resides in the word 'custom,' implying unique and utilitarian products allowing for self-expression of the consumer. Researchers and practitioners however predominantly focused on the company's internal processes to optimize mass customization, often resulting in market failure. As a response, a framework with five factors determining the success of mass customization was developed. Additionally, Living Lab methodologies have been used to improve innovation contexts that were too closed. This paper will fill a gap in the literature by demonstrating that the integration of the five-factor framework in the Living Lab methodology is well suited to determine the possible success or failure of a mass-customized product in the market by means of a single case study

    Hybrid functional calculations of the Al impurity in silica: Hole localization and electron paramagnetic resonance parameters

    Full text link
    We performed first-principle calculations based on the supercell and cluster approaches to investigate the neutral Al impurity in smoky quartz. Electron paramagnetic resonance measurements suggest that the oxygens around the Al center undergo a polaronic distortion which localizes the hole being on one of the four oxygen atoms. We find that the screened exchange hybrid functional successfully describes this localization and improves on standard local density approaches or on hybrid functionals that do not include enough exact exchange such as B3LYP. We find a defect level at about 2.5 eV above the valence band maximum, corresponding to a localized hole in a O 2p orbital. The calculated values of the g tensor and the hyperfine splittings are in excellent agreement with experiment.Comment: 5 pages, 2 figures, 1 tabl

    A possible mechanism of ultrafast amorphization in phase-change memory alloys: an ion slingshot from the crystalline to amorphous position

    Full text link
    We propose that the driving force of an ultrafast crystalline-to-amorphous transition in phase-change memory alloys are strained bonds existing in the (metastable) crystalline phase. For the prototypical example of GST, we demonstrate that upon breaking of long Ge-Te bond by photoexcitation Ge ion shot from an octahedral crystalline to a tetrahedral amorphous position by the uncompensated force of strained short bonds. Subsequent lattice relaxation stabilizes the tetrahedral surroundings of the Ge atoms and ensures the long-term stability of the optically induced phase.Comment: 6 pages, 3 figure

    Canonical Coherent States for the Relativistic Harmonic Oscillator

    Get PDF
    In this paper we construct manifestly covariant relativistic coherent states on the entire complex plane which reproduce others previously introduced on a given SL(2,R)SL(2,R) representation, once a change of variables zCzDz\in C\rightarrow z_D \in unit disk is performed. We also introduce higher-order, relativistic creation and annihilation operators, \C,\Cc, with canonical commutation relation [\C,\Cc]=1 rather than the covariant one [\Z,\Zc]\approx Energy and naturally associated with the SL(2,R)SL(2,R) group. The canonical (relativistic) coherent states are then defined as eigenstates of \C. Finally, we construct a canonical, minimal representation in configuration space by mean of eigenstates of a canonical position operator.Comment: 11 LaTeX pages, final version, shortened and corrected, to appear in J. Math. Phy

    Unit Root Inference in Generally Trending and Cross-Correlated Fixed-T Panels

    Get PDF
    This paper proposes a new panel unit root test based on the generalized method of moments approach for panels with a possibly small number of time periods, T, and a large number of cross-sectional units, N. In the model that we consider the deterministic trend function is essentially unrestricted and the errors obey a multi-factor structure that allows for rich forms of unobserved heterogeneity. In spite of these allowances, the GMM estimator considered is shown to be asymptotically unbiased, N\sqrt{N}-consistent and asymptotically normal for all values of the autoregressive (AR) coefficient, ρ, including unity, making it a natural candidate for unit root inference. Results from our Monte Carlo study suggest that the asymptotic properties are borne out well in small samples. The implementation is illustrated by using a large sample of US banking institutions to test Gibrat’s Law.Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellowship)This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/07350015.2016.119150

    Cylindrical, periodic surface lattice — theory, dispersion analysis, and experiment

    Get PDF
    A two-dimensional surface lattice of cylindrical topology obtained via perturbing the inner surface of a cylinder is considered. Periodic perturbations of the surface lead to observation of high-impedance, dielectric-like media and resonant coupling of surface and non-propagating volume fields. This allows synthesis of tailored-for-purpose "coating" material with dispersion suitable, for instance, to mediate a Cherenkov type interaction. An analytical model of the lattice is discussed and coupled-wave equations are derived. Variations of the lattice dispersive properties with variation of parameters are shown, illustrating the tailoring of the structure's electromagnetic properties. Experimental results are presented showing agreement with the theoretical model
    corecore