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Abstract

This paper proposes a new panel unit root test based on the generalized method of mo-

ments approach for panels with a possibly small number of time periods, T, and a large

number of cross-sectional units, N. In the model that we consider the deterministic trend

function is essentially unrestricted and the errors obey a multi-factor structure that allows

for rich forms of unobserved heterogeneity. In spite of these allowances, the GMM estima-

tor considered is shown to be asymptotically unbiased,
√

N-consistent and asymptotically

normal for all values of the autoregressive (AR) coefficient, ρ, including unity, making it

a natural candidate for unit root inference. Results from our Monte Carlo study suggest

that the asymptotic properties are borne out well in small samples. The implementation is

illustrated by using a large sample of US banking institutions to test Gibrat’s Law.

JEL Classification: C12; C13; C33; C36.

Keywords: Panel data; unit root test; unobserved heterogeneity; common factors; GMM.

1 Introduction

There is a voluminous literature on panel unit root tests. The main motivation for using such

procedures is that by considering not one but N time series of length T the power of panel-

based tests can increase considerably relative to that achievable using univariate tests. The
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largest branch of the literature by far is that focusing on panels where both N and T are large

(see Breitung and Pesaran, 2008, for an overview). A typical study assumes that N, T → ∞

such that N/T → 0. The main reason for this is the presence of cross-sectional heterogeneity,

such as individual-specific effects, the consistent estimation of which requires T → ∞. This

induces an estimation error, which can be controlled, but typically only if N/T → 0, for oth-

erwise the bias is not eliminated as N → ∞ (see Westerlund and Breitung, 2013, Section 5, for

a detailed discussion). This requirement may put strain on the data. Indeed, as a large body

of Monte Carlo evidence shows, while the large-N requirement is usually not a problem, the

large-T requirement, and in particular the requirement that T must be larger than N, poses a

real restriction (see, for example, De Wachter et al., 2007; Hlouskova and Wagner, 2006), to the

extent that researchers might well consider discarding data in order to have N sufficiently small

relative to T.1 Moreover, in many panels, such as those frequently encountered in applied mi-

croeconometrics, T (N) is simply too small (large) for such discarding practices to make sense,

although the unit root hypothesis is still of considerable interest (see Bond et al., 2005).

Discussions like the one in the previous paragraph have motivated researchers to look for in-

ferential procedures that are suitable in fixed-T panels. Harris and Tzavalis (1999) were among

the first. They proposed a fixed-T panel unit root test based on the bias-corrected ordinary least

squares (OLS) estimator of the autoregressive (AR) coefficient, ρ. Many other tests have since

then been proposed (see De Blander and Dhaene, 2012, and the references provided therein).

The evidence reported so far suggests that in terms of small-sample performance, not requiring

T to be large can be a great advantage (see, for example, Harris and Tzavalis, 1999; Hadri and

Larsson, 2005; Hlouskova and Wagner, 2006). In fact, fixed-T tests often outperform large-T

tests and do so for a wide range of values of T.

However, while much progress has been made, there are (at least) two important issues that

have not received much attention. First, except for De Blander and Dhaene (2012), Harris and

Tzavalis (1999, 2004), and Han and Phillips (2010), who consider the case of a linear trend, the

fixed-T literature has not yet ventured outside the fixed effects environment. This is noteworthy

because if one admits to the possibility that time series might be trending, then the probability

that the panel of multiple time series exhibits at least some trending behavior will tend to one as

N → ∞, in which case fixed effects-only tests are rendered invalid. Second, unlike several large-

T “second-generation” unit root tests that allow for cross-sectional dependence in the form of

1For example, while the Penn World Tables have N � T, by considering only the OECD countries, one can make
N � T.
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common factors (see Moon and Perron, 2004, Phillips and Sul, 2003, Bai and Ng, 2004, Pesaran,

2007, among others), as far as we are aware, there is presently no fixed-T unit root test that is

able to accommodate common factors; that is, existing fixed-T tests are “first-generation” tests

(Baltagi, 2008, Chapter 12). A noteworthy exception is the recent working paper by Karavias

and Tzavalis (2014), in which the authors allow for spatial correlation, representing “weak”

cross-sectional dependence.2

The purpose of the current paper is to address both of the above mentioned issues. Specif-

ically, a second-generation approach to unit roots in fixed-T panels is proposed that allows for

both cross-sectional dependence and generally trending behavior. This is accomplished by let-

ting the data admit to a common factor structure, in which the unobserved factors are treated as

unknown parameters to be estimated along with the other parameters of the model. This para-

metric treatment means that the factors are virtually unrestricted, apart from some mild regu-

larity conditions. It also provides a way to control for (unobserved) deterministic trend terms,

which in our model appear naturally as additional factors. In the terminology of Bai (2009),

the model that we consider constitutes an “interactive effects” model. Interestingly, since the

factors are estimated, the usual problem in empirical work of deciding on which deterministic

terms to include does not arise. Hence, the approach is not only general, but is in this sense also

remarkably simple. This is in stark contrast to the existing large-T literature, where the factors

are incidental parameters, the number of which increases with T. Not only does this complicate

estimation, but it also restricts quite substantially the types of factors that can be permitted.

The estimation is carried out by modifying the generalized method of moments (GMM)

approach of Robertson and Sarafidis (2015). The new estimator is shown to have a number of

desirable properties. First, it circumvents the usual incidental parameter bias problem, which

arises because the number of factor loading parameters that has to be estimated increases with

N. This is true both in the conventional fixed effects case and in the more general interactive

effects model considered here. The reason is that we do not require estimates of the loadings

themselves, but only estimation of their normalized second moment, whose dimension remains

fixed as N grows. Second, the estimator supports asymptotically normal inference for all values

of ρ, including unity, and the well-known identification problems that arise when ρ equals unity

do not emerge (see, for example, Bun and Windmeijer, 2010, for a discussion of this issue). The

limiting distribution of the GMM estimator considered here is therefore continuous as ρ passes

through unity (see Han and Phillips, 2010, for a similar result). Finally, the estimator and the

2See Chudik et al. (2011) for a detailed treatment of the concepts of weak and strong cross-sectional dependence.
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associated t-statistic for a unit root appear to have satisfactory small-sample properties.

The remainder of the paper is organized as follows. Section 2 presents the model and as-

sumptions, which are used in Section 3 to derive the GMM estimator and its asymptotic distri-

bution. The empirical usefulness of the new estimator is evaluated using both simulated and

real data in Sections 4 and 5, respectively. Section 6 concludes.

2 Model

Consider the panel data variable yi,t, which is observed over t = 0, 1, ..., T time series and i =

1, ..., N cross-sectional units. The data generating process (DGP) of this variable is assumed to

be given by

yi,t = ρyi,t−1 + ui,t, (1)

ui,t = λ′ift + ε i,t, (2)

for t = 1, . . . T, where ρ ∈ R, ft is an r× 1 vector of common factors, λi is the associated vector of

factor loadings, and ε i,t is an idiosyncratic error term. The following assumptions are assumed

to hold throughout the paper.

Assumption 1. ε i,t ∼ iid(0, σ2
ε ) and has finite moments up to fourth order.

Assumption 2. λi ∼ iid(0, Σλ) with finite moments up to fourth order and Σλ positive definite.

Assumption 3. ft is non-stochastic such that ‖ft‖ < ∞.

Assumption 4. yi,0 is iid and has finite moments up to fourth order.

Assumption 5. E(ε i,t|yi,0, . . . , yi,t−1, λ′i) = 0.

Assumptions 1–2 are mainly employed for simplicity and can be relaxed to allow for more

general DGPs. For example, analogously to the existing dynamic panel GMM literature, ar-

bitrary (unconditional) time series and cross-sectional heteroskedasticity in ε i,t can be allowed

by using the standard sandwich formula of the covariance matrix of the GMM estimator.3 The

independence assumption across i can also be relaxed to allow for weak cross-sectional correla-

tion. However, this would require replacing Assumption 1 with a “high-level” assumption like

3Note that εi,t is not required to be conditionally homoskedastic.
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Assumption C in Bai and Ng (2004), which we would like to avoid. Similarly, while the con-

ditional moments of λi can be heterogeneously distributed, we avoid such generalizations in

order to reduce the notational burden in the paper. The requirement that Σλ should be positive

definite, which is standard in the common factor literature (see Bai and Ng, 2008, for a recent

overview), is, on the other hand, key and cannot be dispensed with.

According to Assumption 3, ft is treated as a fixed parameter vector to be estimated along

with the remaining parameters of the model. Such parametric treatments are common in the

related large-T literature; however, since in that literature T grows, ft has to be restricted. For

example, it is standard practice to assume that ft has some stationary distribution with mean

zero and finite moments up to fourth order (see, for example, Phillips and Sul, 2003), which of

course rules out the presence of deterministic constant and trend terms. Assumption 3 does not

impose any distributional assumptions of this kind and is in this sense very general.

Assumption 4 basically imposes similar conditions for the initial observation as those that

apply to the error components of the model. However, as it will soon become clear, the func-

tional form of yi,0 remains unrestricted. For instance, one could set yi,0 = λ∗′i f0 + ε∗i,0. In this

case, yi,0 could be thought of as the reduced form of yi,t at period t = 0, which is assumed to be

observed. Thus, the values of λ∗i and ε∗i,0 are not necessarily identical to the values of λi and ε i,0

that would arise had yi,0 been assumed to follow (1).

Assumption 5 implies that ε i,t is serially uncorrelated. This can also be relaxed in a straight-

forward way. In particular, a moving average (MA) process of order q can be accommodated

by replacing Assumption 5 with E(ε i,t|yi,0, . . . , yi,t−1−q, λ′i) = 0, for t ≥ 1− q. An autoregressive

process (AR) in ε i,t can be accommodated by simply augmenting the right-hand side of (1) with

more lags of yi,t. This is discussed in detail in Remark 3, and then again in Section 5, where we

implement our approach in the presence of MA errors. In addition, Assumption 5 implies no

correlation between the idiosyncratic error and the factor loadings. This assumption is standard

in dynamic panels and it could be relaxed, although the computational task becomes far more

complex in this case.4 The assumption that ε i,t is uncorrelated with λi is also standard in the

large T-literature (see, for example, Moon and Perron, 2004; Bai and Ng, 2004; Pesaran, 2007).

The above DGP can be seen as a version of the type of components model commonly used

in the large-T (panel) unit root literature, in which the deterministic and stochastic elements of

4For instance, in the simple one-way error components model with ui,t = ηi + εi,t, the GMM estimator proposed
by Arellano and Bond (1991) employs moment conditions of the form E(yi,s∆ui,t) = 0 for s < t− 1. It is easy to see
that this generally requires E(εi,t|ηi) = 0, because otherwise yi,s will be correlated with the transformed error, since
they are both functions of ηi.
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the model are separated explicitly.5 In order to illustrate this point, suppose that

yi,t = di,t + zi,t, (3)

zi,t = ρzi,t−1 + vi,t, (4)

vi,t = γ′iwt + ε i,t, (5)

where di,t represents the deterministic component of yi,t, and wt is an m× 1 vector of “genuine”

stochastic common factors. Multiplying the first lag of expression (3) by ρ and subtracting from

the original equation yields

yi,t = ρyi,t−1 + di,t − ρdi,t−1 + γ′iwt + ε i,t, (6)

which is equivalent to (1) and (2) with λ′ift = di,t − ρdi,t−1 + γ′iwt. To appreciate what impli-

cations the formulation in (6) has for the DGP in (1) and (2) it is useful to consider a couple

of cases. The two most common specifications of di,t by far are di,t = ηi (fixed effects), and

di,t = ηi + βit (incidental trends). In the first specification, di,t − ρdi,t−1 = ηi(1− ρ), whereas in

the second, di,t − ρdi,t−1 = ηi(1− ρ) + βiρ + βi(1− ρ)t. One of the implications of (6) is there-

fore to make the order of the trend polynomial a function of ρ. In the trend case, for example,

when ρ = 1, (6) corresponds to (1) and (2) with r = m + 1, λi = (βi, γ′i)
′ and ft = (1, w′t)

′.

On the other hand, when |ρ| < 1, the same model corresponds to (1) and (2) with r = m + 2,

λi = (ηi(1− ρ) + βiρ, βi(1− ρ), γ′i)
′ and ft = (1, t, w′t)

′. Hence, when cast in terms of (1) and

(2), the fact that in equation (6) the order of the trend polynomial is reduced when ρ = 1 implies

that one of the elements of λi drops out. While this does not fit well with our assumption that

Σλ is positive definite, in practice there is an easy way out of this, which is to make the estima-

tion procedure conditional on r (as it is commonly done in the common factor literature; see Bai

and Ng, 2008). This treatment stands in sharp contrast with the standard dynamic panel data

literature (see the detailed discussion in Section 3), as well as with the large-T panel unit root

literature, in which the estimation is carried out conditional on knowing the whole of di,t. The

fact that the GMM approach developed here does not require di,t to be pre-specified is a great

advantage in practice, as the researcher is spared the problem of having to decide on which

deterministic components to include. If r is unknown, as is usually the case in practice, then an

information criterion may be used to obtain a consistent estimator. In Section 3 we elaborate on

this point.

5See Schmidt and Phillips (1992) for a discussion in the pure time series context.
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It is important to note that our approach is not limited to incidental intercept and trend

terms only; on the contrary, it can accommodate virtually any trend function that is linear in

the parameters, including polynomial trend functions, trigonometric functions and models of

discrete and smooth structural shifts. This is again in stark contrast to the bulk of the existing

large-T literature, which has not yet ventured outside the linear trend environment (see West-

erlund, 2015, for an exception). The reason for this is the presence of incidental parameter bias,

the analytical complexity of which increases very quickly with both the number and the non-

linearity of the trend terms. The implication is that once outside the linear trend environment,

bias-correction is not really an attractive option. Against this background, the asymptotic unbi-

asedness of the GMM estimator developed here is clearly a great advantage, as it enables testing

in situations that were previously not possible.

3 The GMM-based test approach

3.1 Main results

The DGP in (1) and (2) can be written in stacked vector form as

yi = ρyi,−1 + Fλi + εi = ρyi,−1 + (IT ⊗ λ′i)f + εi, (7)

where yi = (yi,1, . . . , yi,T)
′, yi,−1 = (yi,0, . . . , yi,T−1)

′ and εi = (ε i,1, . . . , ε i,T)
′ are T × 1 vectors,

F = (f1, . . . , fT)
′ is a T × r matrix, and f = vec(F′).

Let St be the Mt × T selector matrix of zeroes and ones that for each time period t picks

out the Mt entries of yi,−1 that are uncorrelated with ε i,t, i.e. St is such that E[(Styi,−1)ε i,t] = 0t.

Under Assumption 5 we have St = (It, 0t×(T−t)), a t× T matrix; therefore, at time t the vector of

valid instruments is simply given by yi,0, . . . , yi,t−1. Define S = diag(S1, ..., ST), a M× T2 block

diagonal matrix, where M = ∑T
t=1 Mt = T(T + 1)/2 in the present case. The M× T matrix of

instruments can now be written as

Z′i = S(IT ⊗ yi,−1). (8)

It is easy to verify that E(Z′iεi) = 0M×1. As a result, multiplying (7) by Z′i and taking expecta-

tions yields

m = ρm1 + S(IT ⊗G)f, (9)

where m = E(Z′iyi), m1 = E(Z′iyi,−1) and G = E(yi,−1λ′i), a T × r matrix.6

6The existence of G is implied by Assumptions 1–4.
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The dimension of G can be reduced substantially by taking into account the AR structure of

yi,t. The latter implies that yi,−1 can be written as follows:

yi,−1 = Γe1yi,0 + ΓF̃−1λi + Γε̃i,−1, (10)

where et = (0, ..., 0, 1, 0, ..., 0)′ is a T × 1 vector of zeros, except for a one sitting in position t,

F̃−1 = (0r×1, f1, ..., fT−1)
′ and ε̃i,−1 = (0, ε i,1, ..., ε i,T−1)

′. Also,

Γ = (IT − ρL)−1 =


1 0 . . . 0 0
ρ 1 . . . 0 0
ρ2 ρ . . . 0 0
...

...
. . .

... 0
ρT−1 ρT−2 ρ 1

 ; L =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

... 0
0 0 1 0

 ,

both being T× T matrices. Using the expression in (10) to substitute for yi,−1 in E(yi,−1λ′i) yields

E(yi,−1λ′i) = E[(Γe1yi,0 + ΓF̃−1λi + Γε̃i,−1)λ
′
i] = Γe1g′0 + ΓF̃−1Σλ, (11)

where gs = E(yi,sλi). This means that given ρ, f and Σλ, the only unknown parameters in G are

those contained in the r× 1 vector g0. Thus, making use of (11) leads to a more parsimonious

formulation of the model when compared to (9). As a result, noting that f = (IT ⊗ F′)e, where

e = vec(IT), the proposed vector of moment conditions is given by

m− ρm1 − S[IT ⊗ (Γe1g′0F′ + ΓF̃−1ΣλF′)]e = 0M×1. (12)

Our model is not identified as it stands because the vector of moment conditions in (12) con-

tains products of unknown parameters. In particular, g′0F′ and F̃−1ΣλF′ are not separately iden-

tifiable without normalizing restrictions. This is the same problem encountered in the common

factor literature, which is due to the fact that λ′ift is observationally equivalent to λ∗′i f∗t , where

λ∗i = H−1λi and f∗t = H′ft for some r× r invertible matrix H (see Bai and Ng, 2008, for a discus-

sion). Because of this, in what follows we set, with a slight abuse of notation, F̃−1 = F̃−1Σ1/2
λ ,

F = FΣ1/2′
λ and g0 = Σ−1/2

λ g0. Hence, using f to denote the vectorized version of the normal-

ized F′, the vector of parameters of interest is given by θ = (ρ, f′, g′0)
′ = (θ1, θ′2, θ′3)

′, which

is of order dim (θ) × 1, where dim (θ) = 1 + (T + 1)r. The proposed GMM estimator of this

parameter vector based on the above moment conditions is given by

θ̂ = arg min
θ∈Θ

QN(θ),
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where Θ is a compact subset of Rdim(θ) and

QN(θ) = hN(θ)
′WNhN(θ),

hN(θ) =
1
N

N

∑
i=1

hi(θ),

hi(θ) = Z′iyi − ρZ′iyi,−1 − S[IT ⊗ (Γe1g′0F′ + ΓF̃−1F′)]e,

where WN is an M×M weighting matrix.

Remark 1. Ignoring the structure of G simplifies the estimation burden considerably because,

letting g = vec(G), (9) becomes m = ρm1 + S(F ⊗ IT)g. That is, for a given value of F, the

model is linear and so it can be estimated using OLS. By contrast, the proposed GMM estimator

exploits the non-linear restrictions in G and is therefore non-linear. This extra complication

is, however, well worthwhile, in the sense that ignoring the non-linear restrictions can lead to

a substantial loss of efficiency (see, for example, Wansbeek and Bekker, 1996; Robertson and

Sarafidis, 2015).

Remark 2. The moment conditions in (12) can be modified to allow for MA errors, or a more

general AR structure for yi,t. Suppose first that ε i,t follows an MA(q) process. This case can be

accommodated by setting Z′i = S(IT ⊗ yi,−(q+1)), where yi,−(q+1) = (yi,0, ..., yi,T−1−q)
′ and the

t-th diagonal element of S is given by St = (It, 0t×(T−t−q)), which has dimension t× (T− q). In

Section 5 the estimator is implemented with q ∈ {1, 2}.

Consider next the case when ε i,t is serially uncorrelated, but yi,t follows an AR(2) process;

yi,t = ρ1yi,t−1 + ρ2yi,t−2 + ui,t,

where we assume for notational simplicity that yi,0 and yi,−1 are observed. This model can be

written in vector form as

yi = ρ1yi,−1 + ρ2yi,−2 + (IT ⊗ λ′i)f + εi, (13)

where yi,−2 = (yi,−1, yi,0, ..., yi,T−2)
′ and the remaining vectors are as before. In this case the

vector of instruments is given by y+
i,−1 = (yi,−1, yi,0, . . . , yi,T−1)

′, which has the following DGP:

y+
i,−1 = Γe2yi,0 + Πe1yi,−1 + ΓF̃

+
−1λi + Γε̃+i,−1, (14)

where Γ = (IT − ρ1L − ρ2L2)−1, F̃
+
−1 = (0r×2, f1, ..., fT−1)

′, ε̃+i,−1 = (01×2, ε i,1, ..., ε i,T−1)
′ and

Π is a T × T matrix that is a function of ρ1, ρ2 and T. In this case, Z′i = S(IT ⊗ y+
i,−1) with

9



St = (It+1, 0(t+1)×(T−t)), a (t + 1)× (T + 1) matrix. Thus, pre-multiplying equation (13) by Z′i,

taking expectations (with the normalization enforced) and rearranging yields

m− ρ1m1 − ρ2m2 − S[IT ⊗ (Γe2g′0F′ + Πe1g′−1F′ + ΓF̃
+
−1F′)]e = 0M×1, (15)

where m2 = E(Z′iyi,−2).

Let

∆ = E[∇θhi(θ0)], Ω = E[hi(θ0)hi(θ0)
′],

where θ0 denotes the true value of θ. The following assumptions are sufficient to establish the

asymptotic properties of our estimator:

Assumption 6.

(a) WN
p→ W as N → ∞, where W is a positive definite matrix;

(b) θ0 belongs to the interior of Θ;

(c) E[hi(θ)] = 0M×1 if and only if θ = θ0;

(d) ∆ and Ω exist and both are full rank matrices.

Remark 3. One implication of Assumption 6 (d) is that M, the number of moment conditions, is

at least as large as the number of parameters in θ. Also, while Assumptions 1–6 (a)–(b) could be

sufficient to ensure identification in the standard fixed effects case, Assumption 6 (c) and (d) are

required to ensure identification and regular asymptotics in the more general interactive effects

model considered here.

Theorem 1. Under Assumptions 1–6, as N → ∞,

√
N(θ̂− θ0)

d→ N(0dim(θ)×1, Σθ̂),

where Σθ̂ = (∆′W∆)−1(∆′W′ΩW∆)(∆′W∆)−1.

Proof. See Appendix.
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An analytical expression for ∆ is given in Appendix. If W = Ω−1, the covariance matrix

of θ̂ reduces to Σθ̂ = (∆′Ω−1∆)−1, which is optimal. The same holds if Ω−1 is replaced with a

consistent estimate. This can be achieved by setting

Ω̂ =
1
N

N

∑
i=1

hi(θ̂
1
)hi(θ̂

1
)′,

where θ̂
1 denotes any first-stage consistent GMM estimate of θ, such as the one obtained by

setting W = IM. In agreement with the jargon in the previous literature, the estimator based on

W = Ω̂
−1

(W = IM) is henceforth referred to as the “two-step” (“one-step”) GMM estimator.

Notice that if interest lies only in testing the unit root null hypothesis, one can compute Ω̂ by

setting the first entry in θ̂
1 within hi(θ̂

1
) equal to unity. Alternatively, one can leave the first

entry in θ̂
1 unrestricted in the estimation and impose the unit restriction only when making

inference. This is the practice we have followed in our simulations.

Remark 4. According to Theorem 1 there is no asymptotic bias despite the generality of the

DGP considered, that is, (θ̂− θ0) is centered at zero even when scaled by
√

N. The reason is

that the GMM approach developed here does not require estimating λ1, ..., λN , which implies

that the number of parameters that needs to be estimated remains fixed as N grows large (see

Bai, 2013, for a similar approach based on maximum likelihood).

Remark 5. Theorem 1 holds for all values of ρ0, and in this sense it presents a unified asymptotic

result for the GMM estimator (see also the discussion provided in Section 3.2). This is in contrast

with the existing literature, in which the asymptotic distribution of dynamic panel estimators

depends critically on whether |ρ0| < 1, ρ0 = 1 or ρ0 > 1. In fact, the only exceptions known to

us are the GMM estimators of Han and Phillips (2010), and Kruiniger (2007, 2009, 2013), which

have limit distributions that are continuous for ρ0 ∈ (−1, 1], but not for ρ0 > 1.

Let θ̂ = (ρ̂, f̂′, ĝ′0)
′ = (θ̂1, θ̂

′
2, θ̂
′
3)
′, and denote by Σ̂θ̂ the associated GMM estimator of Σθ̂. The

GMM-based t-statistic for testing H0 : ρ0 = c is given by

tρ̂(c) =
√

N(ρ̂− c)
σ̂ρ̂

.

where σ̂2
ρ̂ is the first diagonal element of Σ̂θ̂. Since σ̂2

ρ̂ is consistent for σ2
ρ̂ , under the conditions

of Theorem 1, we have

tρ̂(ρ0) =

√
N(ρ̂− ρ0)

σ̂ρ̂

d→ N(0, 1) (16)
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as N → ∞. The test is also consistent. This can be appreciated by noting that

tρ̂(c) =
√

N(ρ̂− ρ0)

σ̂ρ̂
+

√
N(ρ0 − c)

σ̂ρ̂
. (17)

While the first term on the right-hand side converges to N(0, 1) by (16), the second is Op(
√

N )

whenever ρ0 6= c. The power of the test will therefore tend to one as N → ∞.

Remark 6. The asymptotic distribution of most (if not all) unit root test statistics depends on

the deterministic specification of the fitted test regression, which need not be equal to the true

one. In time series, this implies that different deterministic specifications have their own critical

values, whereas in panels, it implies that different specifications have their own mean and vari-

ance correction factors (see Westerlund and Breitung, 2013, Section 3). According to (16), the

GMM-based t-statistic has a unique and practically very useful property in that, under the null

hypothesis, it is asymptotically invariant to ft and hence to any trend function that it may con-

tain. Therefore, mean and variance correction factors that depend on a particular deterministic

specification are not required with our approach.

So far the number of factors has been treated as known, which need not be the case in

practice. A natural approach towards this end is to treat the estimation of r as a model selection

problem, which can be handled using an information criterion. Let us denote by r0 the true

value of r, and let θ̂(r) be the estimator of θ̂ based on r factors. The estimator of r0 considered

in the present paper is similar to those of Ahn et al. (2013), and Robertson and Sarafidis (2015),

and is given by

r̂ = arg min
r=0,...,rmax

BIC(r) (18)

with r0 ≤ rmax and BIC(r) = N · QN(θ̂(r))− ln(N) · b(r), where QN(θ̂(r)) is the value of the

objective function evaluated at θ̂(r), which when multiplied by N is identically the value of the

overidentifying restrictions J-statistic for the two-step estimator, and b(r) is a penalty function

that is strictly decreasing in r. As usual, b(r) is not given but has to be set by the researcher.

In our simulations (see Section 4), we set b(r) = df(r)/T0.3, where df(r) = M− dim(θ) is the

degrees of freedom of the model based on r factors.

Theorem 2. Under the conditions of Theorem 1, as N → ∞,

r̂
p→ r0.

12



Proof. The proof of this theorem follows directly from the results in Ahn et al. (2013), and

Robertson and Sarafidis (2015). It is therefore omitted.

Theorem 2 says that asymptotically knowing r̂ is as good as knowing r0. This means that

the result reported in Theorem 1 holds even if r0 is replaced by r̂. To see that this must be the

case, consider

P(
√

N[θ̂(r̂)− θ0] ≤ δ) = P(
√

N[θ̂(r̂)− θ0] ≤ δ|r̂ = r0)P(r̂ = r0)

+ P(
√

N[θ̂(r̂)− θ0] ≤ δ|r̂ 6= r0)P(r̂ 6= r0).

Because P(r̂ = r0)→ 1 and P(r̂ 6= r0)→ 0 by Theorem 2, while the first term on the right-hand

side converges to limN→∞ P(
√

N[θ̂(r̂)− θ0] ≤ δ|r̂ = r0) = limN→∞ P(
√

N[θ̂(r0)− θ0] ≤ δ), the

second term converges to zero. It follows that

|P(
√

N[θ̂(r̂)− θ0] ≤ δ)− P(
√

N[θ̂(r0)− θ0] ≤ δ)| → 0. (19)

The fact that the asymptotic distribution of
√

N[θ̂(r̂) − θ0] is equal to that of
√

N[θ̂(r0) −

θ0] is worthy of some discussion. As alluded to in Section 2, and as we discuss in detail in

Section 3.2, the consistency of r̂ is actually a key ingredient in our estimation strategy, especially

when the DGP is governed by (6). This is so because when ρ0 = 1 some of the factors in ft

become redundant, thus violating the requirement that Σλ should be positive definite. Thus,

in agreement with the existing common factor literature (see, for example, Bai and Ng, 2008),

the number of common factors cannot be overspecified. It is therefore useful to consider briefly

the idea behind the proof of Theorem 2 when r > r0. We need to show that the probability of

selecting an overspecified model is negligible, that is, we need to show that

P[BIC(r0)− BIC(r) > 0]→ 0 (20)

as N → ∞. Direct substitution using the definition of BIC(r) yields

P[BIC(r0)− BIC(r) > 0]

= P[N ·QN(θ̂(r0))− N ·QN(θ̂(r)) + ln(N)(b(r)− b(r0)) > 0]

≤ P[N ·QN(θ̂(r0)) + ln(N)(b(r)− b(r0)) > 0],

where the inequality is due to the fact that QN(θ̂(r)) ≥ 0. Further use of Theorem 1 reveals that

N · QN(θ̂(r0)) = Op(1). Hence, since b(r) < b(r0) for r > r0, we have ln(N)(b(r)− b(r0)) →

−∞ as N → ∞, and therefore (20) is satisfied. It is important to note that this result only makes

13



use of Theorem 1 and the fact that QN(θ̂(r)) ≥ 0. There is therefore no need to evaluate the

asymptotic distribution of
√

N[θ̂(r)− θ0], which would be difficult, if not impossible, since θ̂(r)

comes from an overspecified model. Hence, only by making the estimation of θ0 conditional on

r̂ can we asymptotically eliminate the risk of having redundant factors.

Remark 7. Our testing procedure is valid even if the DGP is different across individuals.

Consider as an example the case when there are two clusters of cross-sectional units, C1 and

C2. Let us denote by N` the cardinality of C`, such that N1 + N2 = N, and suppose that

yi,t = ρyi,t−1 + ηi(1− ρ) + ε i,t for i ∈ C1, and yi,t = ρyi,t−1 + ηi(1− ρ) + βiρ + βi(1− ρ)t + ε i,t for

i ∈ C2. Hence, if |ρ| < 1, then the number of cross-sectional units following a stationary process

with a non-zero mean (trend) is given by N1 (N2). Our procedure is valid because the vector

of moment conditions remains exactly as in (12), except that the value of Σλ will be different

compared to the case where N1 = 0. In the example considered here the last diagonal entry of

Σλ will be equal to (1− π)E(β2
i )(1− ρ0)2, where π = N1/N. In Section 4 we use Monte Carlo

simulations to investigate the effects of this type of clustering in small samples.

3.2 Discussion

Under our assumptions, the model in (1) is identified for all values of ρ0 ∈ R, including ρ0 = 1.

This is an important result that merits some discussion, as it is in contrast to known results for

many existing GMM estimators for dynamic panel data models, such as the ones of Anderson

and Hsiao (1981), and Arellano and Bond (1991), which can fail to identify ρ0 when ρ0 = 1 (see,

for example, Bond et al., 2005, for a discussion). The reason for this is that here unobserved

heterogeneity is absorbed by the factors, the dimension of which can be consistently estimated.

That is, our GMM estimator is obtained conditional on r̂, which is again as good as knowing r0

itself. To fix ideas, suppose that (6) holds with T = 2, di,t = ηi and γi = 0m×1, which is (1) and

(2) with ft = 1 and λi = ηi(1− ρ0). As a result, there is no “genuine” factor structure. It follows

that

yi,t = ηi(1− ρ0) + ρ0yi,t−1 + ε i,t. (21)

The Arellano and Bond (1991) “first-differenced” GMM estimator, hereafter DIF, of this model

involves taking first-differences in order to eliminate ηi(1− ρ0);

∆yi,2 = ρ0∆yi,1 + ∆ε i,2. (22)
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When ρ0 = 1, however, ηi(1− ρ0) = 0 and therefore first-differencing results in a lack of iden-

tification. Indeed, in the T = 2 case considered here, there is a single valid moment condition

in (22), which is given by E(yi,0∆ε i,2) = 0. Identification of ρ0 requires E(yi,0∆yi,1) 6= 0. But if

ρ0 = 1, then

E(yi,0∆yi,1) = E(yi,0[(ρ0 − 1)yi,0 + ηi(1− ρ0) + ε i,1]) = E(yi,0ε i,1) = 0,

and so ρ0 is unidentified. However, notice that under ρ0 = 1, the conventional pooled OLS

estimator of (21) (without common factors) is still consistent, as it is based on a valid restriction

(ηi(1− ρ0) = 0), although it becomes inconsistent for any other value of |ρ0| < 1.

The discussion above suggests that it is desirable to have an estimator that is consistent

regardless of the value taken by ρ0. To see how such an estimator may be devised, let us consider

the proposed GMM estimator, but without exploiting the restrictions for G described in (11),

which are irrelevant for this argument. The appropriate moment conditions have the following

form: m01

m02

m12

− ρ

 m00

m01

m11

− g0(1− ρ0)

 1
1
0

− g1(1− ρ0)

 0
0
1

 = 03×1. (23)

where mst = E(yi,syi,t) and gs = E(yi,sηi). These moment conditions actually correspond to

those employed by DIF. The idea here is that the term involving g0(1− ρ0) can be removed by

simply subtracting the first row of (23) from the second, yielding7

(m02 −m01)− ρ0(m01 −m00) = E[yi,0(∆yi,2 − ρ∆yi,1)] = 0. (24)

Identification of ρ0 based on (23) therefore requires E(yi,0∆yi,1) 6= 0, which is again violated

if ρ0 = 1. In terms of the general DGP considered in this paper, ρ0 = 1 causes a violation

of the full rank condition for ∆, specified in Assumption 6 (d). In order to see this, note that

m01 = E(yi,0yi,1) = E[yi,0(ρ0yi,0 + ηi(1− ρ0) + ε i,1)] = E(y2
i,0), implying

∆ = −

 m00 1 0
m01 1 0
m11 0 1

 = −

 E(y2
i,0) 1 0

E(y2
i,0) 1 0

E(y2
i,1) 0 1

 ,

which has rank two only. But while GMM based on (23) fails to identify ρ0 = 1, it is easy to

see that the corresponding restricted GMM estimator that imposes ηi(1− ρ0) = 0 does in fact

7The last row in (23) can be ignored because it is a moment condition that is consumed to estimate an extra
parameter that does not appear elsewhere, namely, g1(1− ρ).
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identify ρ0 = 1, as ∆ has full rank in this case. But the restriction ηi(1− ρ0) = 0 is equivalent to

setting r0 = 0. Hence, provided that r0 is consistently estimated, the proposed GMM estimator

is consistent regardless of the value of ρ0.

It is important to note that the above mentioned failure of (23) to identify ρ0 = 1 is due to

the fact that under (6) λi is a function of ρ0. If λi is not a function of ρ0, then full identification

based on (23) is possible for all values of ρ0, including unity.

Remark 8. It is instructive to compare the approach considered here with the one of Bond et al.

(2005), in which the popular “system” GMM estimator, hereafter SYS, is employed to test for a

unit root. SYS is equivalent to the GMM estimator that results from imposing g0 = g1 in (23).

In the fixed effects example considered in (21) this restriction holds true because

g1 = E(yi,1ηi) = E[(ρ0yi,0 + (1− ρ0)ηi + ε i,1)ηi] = ρ0E(yi,0ηi) + (1− ρ0)E(η2
i )

= ρ0E(η2
i ) + (1− ρ0)E(η2

i ) = E(η2
i ) = g0,

where we assume that E(yi,0ηi) = E(η2
i ). The effect of this restriction can be appreciated by

noting that (23) reduces to m01

m02

m12

− ρ0

 m00

m01

m11

− g0(1− ρ0)

 1
1
1

 = 03×1, (25)

with

∆ = −

 E(y2
i,0) 1

E(y2
i,0) 1

E(y2
i,1) 1

 .

Since ∆ has full column rank, ρ0 = 1 is identified. Equivalently, subtracting the second row in

(25) from the third yields

(m12 −m02)− ρ0(m11 −m01) = E[∆yi,1(yi,2 − ρ0yi,1)] = 0,

which, together with (24), make up the moment conditions for SYS. However, the aforemen-

tioned estimator has at least two potential shortcomings when compared to the proposed esti-

mator. Firstly, it requires that yi,t is “mean stationary”, that is, E(yi,t|ηi) is constant over t, which

of course need not be the case in practice (see Bun and Sarafidis, 2015, for a detailed discussion).

For example, if the model contains incidental trends, mean stationarity is obviously violated,

rendering SYS invalid. Secondly, SYS is not equipped to handle the presence of genuine factors.
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Remark 9. The above discussion focuses on the fixed effects case. The implications of the

introduction of incidental trends depend on whether we are considering DIF or SYS. It can

be shown that if ρ0 = 1 the moment conditions employed by DIF have the same form as in

(23), except that the coefficients of [1, 1, 0]′ and [0, 1, 1]′ do not depend on ρ0 anymore. This

estimator can identify ρ0 = 1. SYS is, on the other hand, inconsistent, even in absence of genuine

factors, since mean-stationarity is violated. Of course, in practice the deterministic component

of the DGP is never really known, which is true also when it comes to the presence of genuine

factors. In view of this, the fact that the new estimator does not require any a priori knowledge

regarding ft is a great advantage.

4 Monte Carlo simulations

4.1 Design

The DGP is of the same form as the one in (6), where we consider both the fixed effects (di,t = ηi)

and incidental trends (di,t = ηi + βit) cases. Thus, while in the former (latter) case, under the

unit root null hypothesis yi,t is a random walk without (with) a drift, under the alternative

hypothesis, yi,t is stationary (trend-stationary). We also consider a “hybrid DGP”, in which half

of the cross-sectional units are generated with fixed effects, while the other half are generated

with incidental trends. Under the null, ρ0 = 1, while under the alternative, ρ0 ∈ {0.95, 0.99}.

In both cases, ηi ∼ iid N(0, σ2
η,i) and βi ∼ iid N(0, σ2

β,i), where ση,i ∼ iid U[0, 2] and σβ,i ∼

iid U[0, 2]. As for ε i,t, we set ε i,t ∼ iid N(0, σ2
ε,t), where σε,t ∼ iid U[0, 2], and ε i,t = vi,t + 0.7 ·

vi,t−1, vi,t ∼ N(0, σ2
v,t/(1 + 0.72)) for t ≥ 0 and σv,t ∼ iid U[0, 2]. Hence, not only is there

substantial cross-sectional heterogeneity in the DGP, but we also allow ε i,t to be heteroskedastic

and correlated across time. The initial observation is generated as yi,0 = ui,0 = di,0 + γ′iw0 + ε i,0,

where di,0 = ηi in both the fixed effects and incidental trends cases and ε i,0 ∼ iid N(0, 1). We

consider two values for m, the dimension of wt, namely m = 0 and m = 1. Hence, while

under the former parametrization, γ′iwt = 0, under the latter, γ′iwt = γiwt, where γi and wt are

scalars satisfying γi ∼ iid N(0, σ2
γ,i), wt ∼ iid N(0, 1) and σγ,i ∼ iid U[0, 2]. Hence, in this DGP,

r0 ∈ {0, 1, 2, 3}; r0 = 0 in the fixed effects case with m = 0 and ρ0 = 1, r0 = 1 in the fixed effects

(incidental trends) case with m = 0 and ρ0 < 1 (ρ0 = 1), r0 = 2 in the fixed effects (incidental

trends) case with ρ0 < 1 and m = 1 (m = 0), and r0 = 3 in the incidental trends case with ρ0 < 1

and m = 1. We set N ∈ {100, 400, 1600} and the number of effective time periods, T∗, is set to

17



T∗ ∈ {5, 7, 9, 11}.8 All experiments are based on 5000 replications.

4.2 Results

The following results are reported: (i) the mean of ρ̂; (ii) the standard deviation (STD) of ρ̂;

(iii) the empirical rejection frequency of tρ̂(1) at the nominal 5% level (for ρ0 6= 1 we report

size-adjusted rejection frequency); (iv) the empirical rejection frequency of the overidentifying

restrictions J-statistic (again at the nominal 5% level). To speed up the calculations, all results

are based on setting rmax = r0 + 1 with the estimation of r0 carried out as explained in the

previous section, using the BIC(r) criterion.

Table 1 contains the results for the case when m = 0 and T∗ = 5. The full set of moment

conditions equals M = 15 in this case, noting that when ε i,t follows an MA(1) process only

instruments up to yi,t−2 are valid. As a rule of thumb, when N/M ≥ 10, the results reported

are based on the two-step estimator, whereas when N/M < 10, the results are based on the

one-step estimator. This is in order to account for the well-known result that for small N and

large M, the size of two-step GMM-based test statistics tends to be distorted.

The performance of the proposed estimator and the corresponding tρ̂(1)-statistic is more

than satisfactory. In particular, although for N small there appears to be some small bias, the

bias goes away as N increases. Moreover, the size of the tρ̂(1)-statistic is close to the nomi-

nal level in all experiments considered. The power of the tρ̂(1)-statistic is satisfactory as well,

and for ρ0 = .95 it approaches unity rather quickly as N increases, which is reflection of the

consistency of the test.

In terms of STD, the results indicate that the estimator performs best in the fixed effects case,

followed by the incidental trends case, and then the hybrid case. This is to be expected since the

fixed effects-only model implies more degrees of freedom when compared to the other models.

The incidental trends and hybrid models involve the same number of parameters. However, as

is made clear in Remark 7, the variance of the trend slope, βi, in the hybrid model is half the

value of the variance in the incidental trends model. The fact that the STD is relatively high in

the hybrid model is therefore expected, as is the fact that there is little variation in the results

depending on whether ε i,t is serially uncorrelated or not.

The results reported in Table 2 for the case when m = 1 are very similar to those reported

in Table 1 for m = 0. A noticeable difference is the dispersion of the estimator, which is much

8In absence of serial correlation in εi,t, T∗ = T, whereas when εi,t follows an MA process, T∗ = T + 1. For the
incidental trend and hybrid DGPs, we set the minimum value of T∗ equal to 6, in order to have enough moment
conditions to be able to make inference based on the overidentifying restrictions J-statistic.
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larger in Table 2 than in Table 1. This is due to the fact that there are more parameters to estimate

with essentially the same amount of information.

Table 3 reports the empirical rejection frequency for several values of T∗. We see that, as

long as N is not too small, size remains close to the nominal level in all cases. On the other

hand, power appears to increase quite substantially with higher values of T∗. For instance, in

the fixed effects-only model when m = 0, N = 1600 and ρ0 = .99, power increases from .589

when T∗ = 5 to .993 when T∗ = 11. The corresponding increase in power in the model with

incidental trends is from .208 to .777.

Table 4 reports the power of the overidentifying restrictions J-statistic for the case when ε i,t

follows an MA(1) process. This is an important empirical scenario, as serial correlation in ε i,t

invalidates a subset of the proposed moment conditions. As we can see, in all cases considered

the power of the test is high.

5 Application

5.1 Gibrat’s Law

In this section we make use of our methodology in order to examine the empirical validity

of the well known “Law of Proportionate Effect”, or simply Gibrat’s Law (Gibrat, 1931) using

data from the US banking industry. Gibrat’s Law postulates that the growth rate of firms is

independent of their initial size. Analytically, we have

∆ ln si,t = δ + (ρ− 1) ln si,t−1 + ui,t, (26)

where si,t denotes the size of firm i at time t and ui,t is an error term. For ρ < 1 larger firms

tend to grow at a lower rate compared to smaller firms, while for ρ > 1 the process is explosive

and growth rate is proportional to firm size. For ρ = 1 Gibrat’s law holds true because firms’

growth rate is independent of their initial size. This means that Gibrat’s Law can be examined

by testing for a unit root in ln si,t.

Gibrat’s law has become very popular because it provides an explanation for what has been

identified as an empirical regularity where the distribution of firms’ size is often highly skewed

across several industries. In particular, many sectors are characterised by a log-normal distri-

bution with a larger number of small to medium scale firms and relatively few large firms; see

Steindl (1965). Simon and Bonini (1958) argue that under (approximate) constant returns to

scale it is natural to expect that the probability for a given firm to increase/decrease in size in
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proportion to its existing size is the same, on average, for all firms in the industry that lie above

a critical minimum size value. On the other hand, some of the more recent empirical evidence

(see, for example, Sutton, 1997; Caves, 1998) appears to suggest that while Gibrat’s law tends to

be confirmed in small subsamples of well-established, mature, large firms, this is not always the

case for larger samples that include small and young firms, since the latter often have higher

growth rate than their larger counterparts.

As the discussion in the above paragraph suggests, the relation between firm size and

growth rate remains an open issue. In this section, we therefore provide new evidence based on

our newly developed test, which has a number of advantages when compared to existing tests.

First, the test is valid for all values of ρ, including ρ > 1. Second, unlike many other tests, the

test developed here can be implemented without knowing the elements in ft. This advantage is

particularly relevant in the present context, because the size of the firm is likely to depend on its

age, a variable that is not in our sample. As an illustration, let us denote by ai,t the age of firm i,

and let βi denote the impact of age on the size of the firm. Since age increases at the same rate

for all firms, we may write βiai,t = βi(ai,0 + t) = γi + βit, where γi = βi + ai,0 with ai,0 being

the age of the firm at the beginning of the sample. Hence, under said conditions, the effect of

age can be captured using two factors, one is a constant, while the other is a linear time trend.

Of course, a priori we cannot say for sure that age has an effect, and so it is more convenient to

treat age as an unobserved factor to be estimated from the data. Another possibility is that the

factors represent in part common shocks due to for example the global financial crisis.

5.2 Data

The data set consists of a panel of N = 4, 022 depository financial institutions, for which we

have annual observations covering the period 2003–2011. These data have been collected from

the electronic database maintained by the Federal Deposit Insurance Corporation (FDIC) (see

http://www.fdic.gov). Two measures of bank size are considered; (i) fixed assets (FA), and (ii)

number of employees (EMP). Both variables are transformed by taking logs and FA is deflated

using the GDP deflator.

5.3 Results

As starting values for the factors we consider (
√

T times) the eigenvectors corresponding to

the largest r eigenvalues of the T × T matrix ∑N
i=1 (yi − αyi,−1) (yi − αyi,−1)

′ /N, where α =

{0, .1, .2, ..., 1}, as well as fixed effects, linear trends, and a large number of random initializa-
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tions from the normal and uniform distributions. We fit a maximum of rmax = 3 factors and

use the BIC(r) criterion to pick the most appropriate number, given that it passes the J test at

the 5% level. To gauge against possible serial correlation in the errors, the GMM approach is

implemented assuming MA(q) errors, where q ∈ {1, 2}. If the model is misspecified, this is

likely to show up in the J test.

Table 5 reports results obtained based on the two-step GMM estimator. The results are very

similar for EMP and FA. In particular, the point estimate of ρ0 is below unity and the unit root

null hypothesis is rejected even at the 1% level, suggesting that Gibrat’s Law is not supported

by the data. The null hypothesis of instrument validity/correct model specification is also not

rejected. For EMP (FA) the best fitting model according to BIC(r) has one (two) factors. Ocular

inspection reveals that in case of FA while the first factor resembles a trend, the second factor

has a less clear cut shape. This demonstrates the importance of allowing for nonlinear effects,

casting doubt on existing results based on fixed effects-only unit root tests. The estimated factor

for EMP is very similar to the first factor for FA. In fact, the correlation between the two factors

is 0.915.

Our results imply that during the sampling period investigated, Gibrat’s Law is violated

implying that the growth rate of financial institutions is negatively correlated to their initial

size, that is, smaller institutions appear to grow faster than their larger counterparts.

6 Conclusion

This paper develops a GMM-based approach that enables unit root testing in panels where N

is large and T is finite. The assumption that T finite makes our test suitable for both micro and

small-T macro panels. The DGP considered is very general and accommodates an unrestricted

trend function and cross-sectional dependence in the form of common factors. These allowances

make the new approach one of the most general around. Indeed, as far as we are aware, this is

the only fixed-T unit root test approach that can be applied in the presence of cross-sectional de-

pendence and/or a potentially non-linear trend function. The approach is also relatively simple

to implement. In particular, since deterministic terms are treated as additional common factors,

which are estimated, there is no need to model the deterministic part. Our results show that the

new GMM-based unit root test statistic is asymptotically invariant to both the true and fitted

deterministic trend function. Hence, unlike existing tests, with the new test there is no need for

any mean and/or variance correction factors that reflect the fitted deterministic specification.
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The limiting distribution of the GMM t-statistic is normal and this holds true regardless of the

value of the AR coefficient, ρ0. Hence, again unlike most existing tests, with this test there is no

discontinuity in the asymptotic distribution at unity. The asymptotic properties are verified in

small samples using both simulated and raw data.
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Appendix

Proof of Theorem 1

The proof of Theorem 1 follows directly from Theorems 2.6 and 3.4 in Newey and McFadden

(1994). In particular, it is straightforward to establish that the conditions listed therein are ful-

filled under our Assumptions 1–6. For example, continuity of the moment functions holds,

because hi(θ) is essentially a vector of elementary functions of θ, which belongs to the interior

of Θ. Moreover, condition (iv) of Theorem 2.6 in Newey and McFadden (1994) holds, because

of the compactness of Θ and the fact that yi,t has finite moments up to second order. �

Derivatives

In this section we make heavy use of the results of Abadir and Magnus (2005). Readers are

referred to this book for a more detailed treatment of the arguments used here.

Letting

U(θ1, θ2, θ3) = S(IT ⊗ (Γe1g′0F′ + ΓF̃−1F′))e,

we have

hi(θ) = Z′iyi − ρZ′iyi,−1 −U(θ1, θ2, θ3),

hN(θ) = m̂− ρm̂1 −U(θ1, θ2, θ3).

Clearly,

U(θ1, θ2, θ3) = vec(U(θ)) = (e′ ⊗ S)vec(IT ⊗ (Γe1g′0F′ + ΓF̃−1F′))

= (e′ ⊗ S)(IT ⊗KT,T ⊗ IT)[vec(IT)⊗ vec(Γe1g′0F′ + ΓF̃−1F′)]

= (e′ ⊗ S)(IT ⊗KT,T ⊗ IT)[vec(IT)⊗ IT2vec(Γe1g′0F′ + ΓF̃−1F′)]

= (e′ ⊗ S)(IT ⊗KT,T ⊗ IT)[vec(IT)⊗ IT2 ][1⊗ vec(Γe1g′0F′ + ΓF̃−1F′)]

= (e′ ⊗ S)(IT ⊗KT,T ⊗ IT)(e⊗ IT2)vec(Γe1g′0F′ + ΓF̃−1F′)

= A vec(Γe1g′0F′ + ΓF̃−1F′),

where A = (e′ ⊗ S)(IT ⊗KT,T ⊗ IT)(e⊗ IT2), a M× T2 matrix. Here, Kk,n is the kn× kn com-

mutation matrix of zeroes and ones such Kk,nvec H = vec H′ for any k × n matrix H. As a
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result,

Dθ1 U(θ1, θ2, θ3) = A[(Fg0e′1 + FF̃
′
−1)⊗ IT]Dρ Γ(ρ);

Dθ2 U(θ1, θ2, θ3) = A[IT ⊗ (Γe1g′0 + ΓF̃−1) + (F⊗ Γ)Kr,T(B⊗ Ir)];

Dθ3 U(θ1, θ2, θ3) = A(F⊗ Γe1),

where

Dρ Γ(ρ) = vec


0 0 . . . 0 0
1 0 . . . 0 0

2ρ 1 . . . 0 0
...

...
. . .

... 0
(T − 1)ρT−2 (T − 2)ρT−3 1 0

 ,

and B is a T × T matrix with zeros everywhere except in the first lower-diagonal that takes the

value of one. We can therefore show that

∇θhN(θ) = −[m̂1 + Dθ1 U(θ1, θ2, θ3), Dθ2 U(θ1, θ2, θ3), Dθ3 U(θ1, θ2, θ3)].
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Table 3: Rejection frequencies for different values of T∗ when ε i,t is serially uncorrelated.

T∗ = 7 T∗ = 9 T∗ = 11
ρ0 N FE TR HY FE TR HY FE TR HY

m = 0
1 100 .051 .050 .053 .052 .045 .047 .053 .039 .040

400 .047 .084 .079 .063 .047 .048 .047 .045 .056
1600 .050 .053 .057 .054 .046 .049 .051 .051 .046

.99 100 .081 .051 .068 .072 .068 .067 .108 .078 .083
400 .198 .102 .112 .155 .101 .112 .231 .159 .126
1600 .857 .193 .186 .950 .542 .569 .993 .777 .769

.95 100 .441 .217 .224 .585 .194 .219 .738 .870 .888
400 .836 .754 .768 .986 .793 .831 .999 1.00 1.00
1600 1.00 .713 .736 1.00 1.00 1.00 1.00 1.00 1.00

m = 1
1 100 .038 .068 .057 .039 .097 .088 .040 .095 .082

400 .050 .078 .066 .050 .078 .069 .047 .077 .061
1600 .054 .075 .061 .055 .059 .056 .048 .061 .055

.99 100 .067 .056 .068 .073 .065 .067 .081 .075 .081
400 .110 .094 .102 .131 .103 .121 .182 .141 .152
1600 .819 .173 .193 .903 .373 .419 .969 .608 .690

.95 100 .701 .343 .368 .477 .176 .195 .565 .213 .328
400 .983 .374 .381 .930 .653 .701 1.00 .833 .981
1600 1.00 .978 .998 1.00 1.00 1.00 1.00 1.00 1.00

Notes: “FE”, “TR” and “HY” refer to the fixed effects, the incidental trends
and hybrid models, respectively.

Table 4: Power of the J-statistic when ε i,t follows an MA(1) process.

ρ0 = 1 ρ0 = .99 ρ0 = .95
N FE TR HY FE TR HY FE TR HY

m = 0
100 .983 .841 .843 .984 .836 .840 .997 .838 .834
400 1.00 1.00 .994 1.00 1.00 .998 1.00 .997 .996
1600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

m = 1
100 .857 .794 .782 .947 .757 .816 .954 .769 .776
400 .957 .938 .895 .998 .839 .967 .972 .968 .920
1600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: The results for m = 0 (m = 1) are based on T∗ = 5 (T∗ = 7).
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Table 5: Empirical results.

Measure ρ̂ σ̂ρ tρ̂(1) p-value J p-value BIC1 r̂ q
EMP .866 .001 -126.1 .000 22.08 .228 -57.9 1 1
FA .822 .001 -128.0 .000 3.89 .918 -36.1 2 1

Notes: “ρ̂” and “σ̂ρ” refer to the two-step GMM estimator of ρ0 and its estimated standard
error, “tρ̂(1)” refers to the unit root t-statistic, “J” refers to the Hansen–Sargan statistic,
“BIC1” refers to the minimizing value of the BIC1, “r̂” refers to the estimated number
of factors using the BIC1, and “q” refers to the order of the assumed MA errors.
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