31 research outputs found

    All-optical hyperpolarization of electron and nuclear spins in diamond

    Get PDF
    Low thermal polarization of nuclear spins is a primary sensitivity limitation for nuclear magnetic resonance. Here we demonstrate optically pumped (microwave-free) nuclear spin polarization of 13C^{13}\mathrm{C} and 15N^{15}\mathrm{N} in 15N^{15}\mathrm{N}-doped diamond. 15N^{15}\mathrm{N} polarization enhancements up to 2000-2000 above thermal equilibrium are observed in the paramagnetic system Ns0\mathrm{N_s}^{0}. Nuclear spin polarization is shown to diffuse to bulk 13C^{13}\mathrm{C} with NMR enhancements of 200-200 at room temperature and 500-500 at 240 K\mathrm{240~K}, enabling a route to microwave-free high-sensitivity NMR study of biological samples in ambient conditions.Comment: 5 pages, 5 figure

    Theoretical model of the dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    Full text link
    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defects' electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process

    The Principles of Social Order. Selected Essays of Lon L. Fuller, edited With an introduction by Kenneth I. Winston

    Get PDF
    The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields

    Optical polarization of nuclear spins in silicon carbide

    Get PDF
    We demonstrate optically pumped dynamic nuclear polarization of 29-Si nuclear spins that are strongly coupled to paramagnetic color centers in 4H- and 6H-SiC. The 99 +/- 1% degree of polarization at room temperature corresponds to an effective nuclear temperature of 5 microKelvin. By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.Comment: 21 pages including supplementary information; four figures in main text and one tabl

    Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    Get PDF
    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defects electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process
    corecore