448 research outputs found

    Realization of two Fourier-limited solid-state single-photon sources

    Full text link
    We demonstrate two solid-state sources of indistinguishable single photons. High resolution laser spectroscopy and optical microscopy were combined at T = 1.4 K to identify individual molecules in two independent microscopes. The Stark effect was exploited to shift the transition frequency of a given molecule and thus obtain single photon sources with perfect spectral overlap. Our experimental arrangement sets the ground for the realization of various quantum interference and information processing experiments.Comment: 6 page

    Molecules as Sources for Indistinguishable Single Photons

    Full text link
    We report on the triggered generation of indistinguishable photons by solid-state single-photon sources in two separate cryogenic laser scanning microscopes. Organic fluorescent molecules were used as emitters and investigated by means of high resolution laser spectroscopy. Continuous-wave photon correlation measurements on individual molecules proved the isolation of single quantum systems. By using frequency selective pulsed excitation of the molecule and efficient spectral filtering of its emission, we produced triggered Fourier-limited single photons. In a further step, local electric fields were applied to match the emission wavelengths of two different molecules via Stark effect. Identical single photons are indispensible for the realization of various quantum information processing schemes proposed. The solid-state approach presented here prepares the way towards the integration of multiple bright sources of single photons on a single chip.Comment: Accepted for publication in J. Mod. Opt. This is the original submitted versio

    On the Definition of Effective Permittivity and Permeability For Thin Composite Layers

    Get PDF
    The problem of definition of effective material parameters (permittivity and permeability) for composite layers containing only one-two parallel arrays of complex-shaped inclusions is discussed. Such structures are of high importance for the design of novel metamaterials, where the realizable layers quite often have only one or two layers of particles across the sample thickness. Effective parameters which describe the averaged induced polarizations are introduced. As an explicit example, we develop an analytical model suitable for calculation of the effective material parameters ϵeff\epsilon_{\rm{eff}} and μeff\mu_{\rm{eff}} for double arrays of electrically small electrically polarizable scatterers. Electric and magnetic dipole moments induced in the structure and the corresponding reflection and transmission coefficients are calculated using the local field approach for the normal plane-wave incidence, and effective parameters are introduced through the averaged fields and polarizations. In the absence of losses both material parameters are purely real and satisfy the Kramers-Kronig relations and the second law of thermodynamics. We compare the analytical results to the simulated and experimental results available in the literature. The physical meaning of the introduced parameters is discussed in detail.Comment: 6 pages, 5 figure

    Quantum Interference of Tunably Indistinguishable Photons from Remote Organic Molecules

    Full text link
    We demonstrate two-photon interference using two remote single molecules as bright solid-state sources of indistinguishable photons. By varying the transition frequency and spectral width of one molecule, we tune and explore the effect of photon distinguishability. We discuss future improvements on the brightness of single-photon beams, their integration by large numbers on chips, and the extension of our experimental scheme to coupling and entanglement of distant molecules

    Effects of Initial Age Structure of Managed Norway Spruce Forest Area on Net Climate Impact of Using Forest Biomass for Energy

    Get PDF
    We investigated how the initial age structure of a managed, middle boreal (62A degrees N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.Peer reviewe

    Amiodarone disrupts cholesterol biosynthesis pathway and causes accumulation of circulating desmosterol by inhibiting 24-dehydrocholesterol reductase

    Get PDF
    Background We have earlier reported that amiodarone, a potent and commonly used antiarrhythmic drug increases serum desmosterol, the last precursor of cholesterol, in 20 cardiac patients by an unknown mechanism. Objective Here, we extended our study to a large number of cardiac patients of heterogeneous diagnoses, evaluated the effects of combining amiodarone and statins (inhibitors of cholesterol synthesis at the rate-limiting step of hydroxy-methyl-glutaryl CoA reductase) on desmosterol levels and investigated the mechanism(s) by which amiodarone interferes with the metabolism of desmosterol using in vitro studies. Methods and Results We report in a clinical case-control setting of 236 cardiac patients (126 with and 110 without amiodarone treatment) that amiodarone medication is accompanied by a robust increase in serum desmosterol levels independently of gender, age, body mass index, cardiac and other diseases, and the use of statins. Lipid analyses in patient samples taken before and after initiation of amiodarone therapy showed a systematic increase of desmosterol upon drug administration, strongly arguing for a direct causal link between amiodarone and desmosterol accumulation. Mechanistically, we found that amiodarone resulted in desmosterol accumulation in cultured human cells and that the compound directly inhibited the 24-dehydrocholesterol reductase (DHCR24) enzyme activity. Conclusion These novel findings demonstrate that amiodarone blocks the cholesterol synthesis pathway by inhibiting DHCR24, causing a robust accumulation of cellular desmosterol in cells and in the sera of amiodarone-treated patients. It is conceivable that the antiarrhythmic potential and side effects of amiodarone may in part result from inhibition of the cholesterol synthesis pathway.Peer reviewe

    Identification of Kinases Regulating Prostate Cancer Cell Growth Using an RNAi Phenotypic Screen

    Get PDF
    As prostate cancer progresses to castration-resistant disease, there is an increase in signal transduction activity. Most castration-resistant prostate tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes, despite the near absence of circulating androgen in these patients. The AR is regulated not only by its cognate steroid hormone, but also by interactions with a constellation of co-regulatory and signaling molecules. Thus, the elevated signaling activity that occurs during progression to castration resistance can affect prostate cancer cell growth either through the AR or independent of the AR. In order to identify signaling pathways that regulate prostate cancer cell growth, we screened a panel of shRNAs targeting 673 human kinases against LNCaP prostate cancer cells grown in the presence and absence of hormone. The screen identified multiple shRNA clones against known and novel gene targets that regulate prostate cancer cell growth. Based on the magnitude of effect on growth, we selected six kinases for further study: MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1. Knockdown of these kinases decreased cell growth in both androgen-dependent and castration-resistant prostate cancer cells. However, these kinases had different effects on basal or androgen-induced transcriptional activity of AR target genes. MAP3K11 knockdown most consistently altered transcription of AR target genes, suggesting that MAP3K11 affected its growth inhibitory effect by modulating the AR transcriptional program. Consistent with MAP3K11 acting on the AR, knockdown of MAP3K11 inhibited AR Ser 650 phosphorylation, further supporting stress kinase regulation of AR phosphorylation. This study demonstrates the applicability of lentiviral-based shRNA for conducting phenotypic screens and identifies MAP3K11, DGKD, ICK, CIT, GALK2, and PSKH1 as regulators of prostate cancer cell growth. The thorough evaluation of these kinase targets will pave the way for developing more effective treatments for castration-resistant prostate cancer
    • …
    corecore