976 research outputs found

    Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    Get PDF
    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and Processing 201

    Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO

    Get PDF
    The Fermi collaboration identified a possible electromagnetic counterpart of the gravitational wave event of September 14, 2015. Our goal is to provide an unsupervised data analysis algorithm to identify similar events in Fermi's Gamma-ray Burst Monitor CTTE data stream. We are looking for signals that are typically weak. Therefore, they can only be found by a careful analysis of count rates of all detectors and energy channels simultaneously. Our Automatized Detector Weight Optimization (ADWO) method consists of a search for the signal, and a test of its significance. We developed ADWO, a virtual detector analysis tool for multi-channel multi-detector signals, and performed successful searches for short transients in the data-streams. We have identified GRB150522B, as well as possible electromagnetic candidates of the transients GW150914 and LVT151012. ADWO is an independently developed, unsupervised data analysis tool that only relies on the raw data of the Fermi satellite. It can therefore provide a strong, independent test to any electromagnetic signal accompanying future gravitational wave observations.Comment: 4 pages and 4 figures, A&A Letters accepte

    Invariance Conditions for Nonlinear Dynamical Systems

    Full text link
    Recently, Horv\'ath, Song, and Terlaky [\emph{A novel unified approach to invariance condition of dynamical system, submitted to Applied Mathematics and Computation}] proposed a novel unified approach to study, i.e., invariance conditions, sufficient and necessary conditions, under which some convex sets are invariant sets for linear dynamical systems. In this paper, by utilizing analogous methodology, we generalize the results for nonlinear dynamical systems. First, the Theorems of Alternatives, i.e., the nonlinear Farkas lemma and the \emph{S}-lemma, together with Nagumo's Theorem are utilized to derive invariance conditions for discrete and continuous systems. Only standard assumptions are needed to establish invariance of broadly used convex sets, including polyhedral and ellipsoidal sets. Second, we establish an optimization framework to computationally verify the derived invariance conditions. Finally, we derive analogous invariance conditions without any conditions

    Directed Surfaces in Disordered Media

    Full text link
    The critical exponents for a class of one-dimensional models of interface depinning in disordered media can be calculated through a mapping onto directed percolation (DP). In higher dimensions these models give rise to directed surfaces, which do not belong to the directed percolation universality class. We formulate a scaling theory of directed surfaces, and calculate critical exponents numerically, using a cellular automaton that locates the directed surfaces without making reference to the dynamics of the underlying interface growth models.Comment: 4 pages, REVTEX, 2 Postscript figures avaliable from [email protected]

    Biscale Chaos in Propagating Fronts

    Full text link
    The propagating chemical fronts found in cubic autocatalytic reaction-diffusion processes are studied. Simulations of the reaction-diffusion equation near to and far from the onset of the front instability are performed and the structure and dynamics of chemical fronts are studied. Qualitatively different front dynamics are observed in these two regimes. Close to onset the front dynamics can be characterized by a single length scale and described by the Kuramoto-Sivashinsky equation. Far from onset the front dynamics exhibits two characteristic lengths and cannot be modeled by this amplitude equation. An amplitude equation is proposed for this biscale chaos. The reduction of the cubic autocatalysis reaction-diffusion equation to the Kuramoto-Sivashinsky equation is explicitly carried out. The critical diffusion ratio delta, where the planar front loses its stability to transverse perturbations, is determined and found to be delta=2.300.Comment: Typeset using RevTeX, fig.1 and fig.4 are not available, mpeg simulations are at http://www.chem.utoronto.ca/staff/REK/Videos/front/front.htm

    Pipe network model for scaling of dynamic interfaces in porous media

    Get PDF
    We present a numerical study on the dynamics of imbibition fronts in porous media using a pipe network model. This model quantitatively reproduces the anomalous scaling behavior found in imbibition experiments [Phys. Rev. E {\bf 52}, 5166 (1995)]. Using simple scaling arguments, we derive a new identity among the scaling exponents in agreement with the experimental results.Comment: 13 pages, 3 figures, REVTeX, to appear in Phys. Rev. Let

    Driven interfaces in disordered media: determination of universality classes from experimental data

    Full text link
    While there have been important theoretical advances in understanding the universality classes of interfaces moving in porous media, the developed tools cannot be directly applied to experiments. Here we introduce a method that can identify the universality class from snapshots of the interface profile. We test the method on discrete models whose universality class is well known, and use it to identify the universality class of interfaces obtained in experiments on fluid flow in porous media.Comment: 4 pages, 5 figure

    Multidimensional analysis of Fermi GBM gamma-ray bursts

    Get PDF
    The Fermi GBM catalog provides a large database with many measured variables that can be used to explore and verify gamma-ray burst classification results. We have used Principal Component Analysis and statistical clustering techniques to look for clustering in a sample of 801 gamma-ray bursts described by sixteen classification variables. The analysis recovers what appears to be the Short class and two long-duration classes that differ from one another via peak flux, with negligible variations in fluence, duration and spectral hardness. Neither class has properties entirely consistent with the Intermediate GRB class. Spectral hardness has been a critical Intermediate class property. Rather than providing spectral hardness, Fermi GBM provides a range of fitting variables for four different spectral models; it is not intuitive how these variables can be used to support or disprove previous GRB classification results.Comment: accepte

    Local Chirality of Low-Lying Dirac Eigenmodes and the Instanton Liquid Model

    Get PDF
    The reasons for using low-lying Dirac eigenmodes to probe the local structure of topological charge fluctuations in QCD are discussed, and it is pointed out that the qualitative double-peaked behavior of the local chiral orientation probability distribution in these modes is necessary, but not sufficient for dominance of instanton-like fluctuations. The results with overlap Dirac operator in Wilson gauge backgrounds at lattice spacings ranging from a~0.04 fm to a~0.12 fm are reported, and it is found that the size and density of local structures responsible for double-peaking of the distribution are in disagreement with the assumptions of the Instanton Liquid Model. More generally, our results suggest that vacuum fluctuations of topological charge are not effectively dominated by locally quantized (integer-valued) lumps in QCD.Comment: 29 pages, 13 figures; v2: minor improvements in presentation, results and conclusions unchanged, version to appear in PR

    Experiments of Interfacial Roughening in Hele-Shaw Flows with Weak Quenched Disorder

    Get PDF
    We have studied the kinetic roughening of an oil--air interface in a forced imbibition experiment in a horizontal Hele--Shaw cell with quenched disorder. Different disorder configurations, characterized by their persistence length in the direction of growth, have been explored by varying the average interface velocity v and the gap spacing b. Through the analysis of the rms width as a function of time, we have measured a growth exponent beta ~= 0.5 that is almost independent of the experimental parameters. The analysis of the roughness exponent alpha through the power spectrum have shown different behaviors at short (alpha_1) and long (alpha_2) length scales, separated by a crossover wavenumber q_c. The values of the measured roughness exponents depend on experimental parameters, but at large velocities we obtain alpha_1 ~= 1.3 independently of the disorder configuration. The dependence of the crossover wavenumber with the experimental parameters has also been investigated, measuring q_c ~ v^{0.47} for the shortest persistence length, in agreement with theoretical predictions.Comment: 20 pages, 22 figure
    corecore