101 research outputs found

    Deficiency of Antioxidative Paraoxonase 2 (Pon2) Leads to Increased Number of Phenotypic LT-HSCs and Disturbed Erythropoiesis

    Get PDF
    Background. Long-term hematopoietic stem cells (LT-HSCs) reside in bone marrow niches with tightly controlled reactive oxygen species (ROS) levels. ROS increase results into LT-HSC differentiation and stem cell exhaustion. Paraoxonase 2 (PON2) has been shown to be important for ROS control. Objectives. We investigate the effects of inactivation of the PON2 gene on hematopoietic cell differentiation and activity. Methods and Results. In young mice with inactivated Pon2 gene (Pon2-/-, -/- BM outcompeted WT BM at early time points. ROS levels were significantly increased in Pon2-/- whole BM, but not in Pon2-/- LT-HSCs. In more differentiated stages of hematopoiesis, Pon2 deficiency led to a misbalanced erythropoiesis both in physiologic and stress conditions. In older mice (>9 months), Pon2 depletion caused an increase in LT-HSCs as well as increased levels of granulocyte/macrophage progenitors (GMPs) and myeloid skewing, indicating a premature aging phenotype. No significant changes in ROS levels in old Pon2-/- LT- and short-term (ST-) HSCs were observed, but a significant reduction of spontaneous apoptotic cell death was measured. RNA-seq analysis in Pon2-/- LT-HSCs identified overrepresentation of genes involved in the C-X-C chemokine receptor type 4 (Cxcr4) signaling, suggesting compensatory mechanisms to overcome ROS-mediated accelerated aging in hematopoietic progenitor cells. Conclusions. In summary, our current data indicate that PON2 is involved in the regulation of HSC functions

    Toll-like receptor polymorphisms and cerebral malaria: <it>TLR2 </it>Δ22 polymorphism is associated with protection from cerebral malaria in a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In malaria endemic areas, host genetics influence whether a <it>Plasmodium falciparum</it>-infected child develops uncomplicated or severe malaria. TLR2 has been identified as a receptor for <it>P. falciparum</it>-derived glycosylphosphatidylinositol (GPI), and polymorphisms within the TLR2 gene may affect disease pathogenesis. There are two common polymorphisms in the 5' un-translated region (UTR) of TLR2, a 22 base pair deletion in the first unstranslated exon (Δ22), and a GT dinucleotide repeat in the second intron (GTn).</p> <p>Methods</p> <p>These polymorphisms were examined in a Ugandan case control study on children with either cerebral malaria or uncomplicated malaria. Serum cytokine levels were analysed by ELISA, according to genotype and disease status. In vitro TLR2 expression was measured according to genotype.</p> <p>Results</p> <p>Both Δ22 and GTn polymorphisms were highly frequent, but only Δ22 heterozygosity was associated with protection from cerebral malaria (OR 0.34, 95% confidence intervals 0.16, 0.73). In vitro, heterozygosity for Δ22 was associated with reduced pam3cys inducible TLR2 expression in human monocyte derived macrophages. In uncomplicated malaria patients, Δ22 homozygosity was associated with elevated serum IL-6 (<it>p </it>= 0.04), and long GT repeat alleles were associated with elevated TNF (<it>p </it>= 0.007).</p> <p>Conclusion</p> <p>Reduced inducible TLR2 expression may lead to attenuated pro-inflammatory responses, a potential mechanism of protection from cerebral malaria present in individuals heterozygous for the TLR2 Δ22 polymorphism.</p

    Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients

    Get PDF
    BACKROUND: Cigarette smoke exposure including biologically active lipopolysaccharide (LPS) in the particulate phase of cigarette smoke induces activation of alveolar macrophages (AM) and alveolar epithelial cells leading to production of inflammatory mediators. This represents a crucial mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Respiratory pathogens are a major cause of exacerbations leading to recurrent cycles of injury and repair. The interaction between pathogen-associated molecular patterns and the host is mediated by pattern recognition receptors (PRR's). In the present study we characterized the expression of Toll-like receptor (TLR)- 2, TLR4 and CD14 on human AM compared to autologous monocytes obtained from patients with COPD, healthy smokers and non-smokers. METHODS: The study population consisted of 14 COPD patients without evidence for acute exacerbation, 10 healthy smokers and 17 healthy non-smokers stratified according to age. The expression of TLR2, TLR4 and CD14 surface molecules on human AM compared to autologous monocytes was assessed ex vivo using FACS analysis. In situ hybridization was performed on bronchoalveolar lavage (BAL) cells by application of the new developed HOPE-fixative. RESULTS: The expression of TLR2, TLR4 and CD14 on AM from COPD patients, smokers and non-smokers was reduced as compared to autologous monocytes. Comparing AM we detected a reduced expression of TLR2 in COPD patients and smokers. In addition TLR2 mRNA and protein expression was increased after LPS stimulation on non-smokers AM in contrast to smokers and COPD patients. CONCLUSION: Our data suggest a smoke related change in the phenotype of AM's and the cellular response to microbial stimulation which may be associated with impairment of host defenses in the lower respiratory tract

    Peripheral blood T-cell signatures from high-resolution immune phenotyping of γδ and αβ T-cells in younger and older subjects in the Berlin Aging Study II

    Get PDF
    Background Aging and latent infection with Cytomegalovirus (CMV) are thought to be major factors driving the immune system towards immunosenescence, primarily characterized by reduced amounts of naïve T-cells and increased memory T-cells, potentially associated with higher morbidity and mortality. The composition of both major compartments, γδ as well as αβ T-cells, is altered by age and CMV, but detailed knowledge of changes to the γδ subset is currently limited. Results Here, we have surveyed a population of 73 younger (23–35 years) and 144 older (62–85 years) individuals drawn from the Berlin Aging Study II, investigating the distribution of detailed differentiation phenotypes of both γδ and αβ T-cells. Correlation of frequencies and absolute counts of the identified phenotypes with age and the presence of CMV revealed a lower abundance of Vδ2-positive and a higher amount of Vδ1-positive cells. We found higher frequencies of late-differentiated and lower frequencies of early-differentiated cells in the Vδ1+ and Vδ1-Vδ2-, but not in the Vδ2+ populations in elderly CMV-seropositive individuals confirming the association of these Vδ2-negative cells with CMV-immunosurveillance. We identified the highest Vδ1:Vδ2 ratios in the CMV-seropositive elderly. The observed increased CD4:CD8 ratios in the elderly were significantly lower in CMV-seropositive individuals, who also possessed a lower naïve and a larger late-differentiated compartment of CD8+ αβ T-cells, reflecting the consensus in the literature. Conclusions Our findings illustrate in detail the strong influence of CMV on the abundance and differentiation pattern of γδ T-cells as well as αβ T-cells in older and younger people. Mechanisms responsible for the phenotypic alterations in the γδ T-cell compartment, associated both with the presence of CMV and with age require further clarification

    Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate whether the toll-like receptor 2 polymorphisms could influence susceptibility to pulmonary TB, its phenotypes, and blood lymphocyte subsets.</p> <p>Methods</p> <p>A total of 368 subjects, including 184 patients with pulmonary TB and 184 healthy controls, were examined for TLR2 polymorphisms over locus -100 (microsatellite guanine-thymine repeats), -16934 (T>A), -15607 (A>G), -196 to -174 (insertion>deletion), and 1350 (T>C). Eighty-six TB patients were examined to determine the peripheral blood lymphocyte subpopulations.</p> <p>Results</p> <p>We newly identified an association between the haplotype [A-G-(insertion)-T] and susceptibility to pulmonary TB (p = 0.006, false discovery rate q = 0.072). TB patients with systemic symptoms had a lower -196 to -174 deletion/deletion genotype frequency than those without systemic symptoms (5.7% vs. 17.7%; p = 0.01). TB patients with the deletion/deletion genotype had higher blood NK cell counts than those carrying the insertion allele (526 vs. 243.5 cells/μl, p = 0.009). TB patients with pleuritis had a higher 1350 CC genotype frequency than those without pleuritis (12.5% vs. 2.1%; p = 0.004). TB patients with the 1350 CC genotype had higher blood NK cell counts than those carrying the T allele (641 vs. 250 cells/μl, p = 0.004). TB patients carrying homozygous short alleles for GT repeats had higher blood NK cell counts than those carrying one or no short allele (641 vs. 250 cells/μl, p = 0.004).</p> <p>Conclusions</p> <p>TLR2 genetic polymorphisms influence susceptibility to pulmonary TB. TLR2 variants play a role in the development of TB phenotypes, probably by controlling the expansion of NK cells.</p

    Augmented TLR2 Expression on Monocytes in both Human Kawasaki Disease and a Mouse Model of Coronary Arteritis

    Get PDF
    BACKGROUND: Kawasaki disease (KD) of unknown immunopathogenesis is an acute febrile systemic vasculitis and the leading cause of acquired heart diseases in childhood. To search for a better strategy for the prevention and treatment of KD, this study compared and validated human KD immunopathogenesis in a mouse model of Lactobacillus casei cell wall extract (LCWE)-induced coronary arteritis. METHODS: Recruited subjects fulfilled the criteria of KD and were admitted for intravenous gamma globulin (IVIG) treatment at the Kaohsiung Chang Gung Memorial Hospital from 2001 to 2009. Blood samples from KD patients were collected before and after IVIG treatment, and cardiovascular abnormalities were examined by transthoracic echocardiography. Wild-type male BALB/c mice (4-week-old) were intraperitoneally injected with LCWE (1 mg/mL) to induce coronary arteritis. The induced immune response in mice was examined on days 1, 3, 7, and 14 post injections, and histopathology studies were performed on days 7 and 14. RESULTS: Both human KD patients and LCWE-treated mice developed coronary arteritis, myocarditis, valvulitis, and pericarditis, as well as elevated plasma levels of interleukin (IL)-2, IL-6, IL-10, monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF)-α in acute phase. Most of these proinflammatory cytokines declined to normal levels in mice, whereas normal levels were achieved in patients only after IVIG treatment, with a few exceptions. Toll-like receptor (TLR)-2, but not TLR4 surface enhancement on circulating CD14+ monocytes, was augmented in KD patients before IVIG treatment and in LCWE-treated mice, which declined in patients after IVIG treatment. CONCLUSION: This result suggests that that not only TLR2 augmentation on CD14+ monocytes might be an inflammatory marker for both human KD patients and LCWE-induced CAL mouse model but also this model is feasible for studying therapeutic strategies of coronary arteritis in human KD by modulating TLR2-mediated immune activation on CD14+ monocytes

    Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light?

    Get PDF

    Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer

    Get PDF
    An Author Correction to this article was published on 29 May 2018 https://www.nature.com/articles/s41477-018-0163-4 http://eprints.whiterose.ac.uk/131699/ Upon transition of plants from darkness to light the initiation of photosynthetic linear electron transfer (LET) from H2O to NADP+ precedes the activation of CO2 fixation, creating a lag period where cyclic electron transfer (CET) around photosystem I (PSI) has an important protective role. CET generates ΔpH without net reduced NADPH formation, preventing overreduction of PSI via regulation of the cytochrome b 6 f (cytb 6 f) complex and protecting PSII from overexcitation by inducing non-photochemical quenching. The dark-to-light transition also provokes increased phosphorylation of light-harvesting complex II (LHCII). However, the relationship between LHCII phosphorylation and regulation of the LET/CET balance is not understood. Here, we show that the dark-to-light changes in LHCII phosphorylation profoundly alter thylakoid membrane architecture and the macromolecular organization of the photosynthetic complexes, without significantly affecting the antenna size of either photosystem. The grana diameter and number of membrane layers per grana are decreased in the light while the number of grana per chloroplast is increased, creating a larger contact area between grana and stromal lamellae. We show that these changes in thylakoid stacking regulate the balance between LET and CET pathways. Smaller grana promote more efficient LET by reducing the diffusion distance for the mobile electron carriers plastoquinone and plastocyanin, whereas larger grana enhance the partition of the granal and stromal lamellae plastoquinone pools, enhancing the efficiency of CET and thus photoprotection by non-photochemical quenching
    • …
    corecore