63 research outputs found

    Polarizability of interacting atoms: Relation to collision-induced light scattering and dielectric models

    Get PDF
    The polarizability tensor of a pair of interacting He atoms has been calculated as a function of internuclear separation r using the fully self-consistent Hartree-Fock theory. It was found that the trace of the polarizability tensor, α(r), to which the second dielectric virial coefficient Bε is directly proportional, decreases with decreasing r, giving a theoretical value of Bε=-0.093 a.u. at room temperature, compared with the experimental result Bε=-0.06±0.04 a.u., measured by Orcutt and Cole [J. Chem. Phys. 46, 697 (1967)]. This is the first calculation that predicts the correct sign of Bε. We conclude that for He the effects of overlap are of opposite sign from and of sufficient magnitude to overcome the contributions of the van der Waals interaction to α(r). Furthermore, the anisotropy of the pair polarizability β(r) can be represented by a simple form: β(r)=6α2r-3-λ e-r/r0, where r0=0.74 a.u., and the collision-induced light-scattering spectrum predicted by this form has an essentially exponential line shape. These results are in qualitative agreement with recent work on collision-induced light-scattering spectra from rare gases

    Radial Squeezed States and Rydberg Wave Packets

    Get PDF
    We outline an analytical framework for the treatment of radial Rydberg wave packets produced by short laser pulses in the absence of external electric and magnetic fields. Wave packets of this type are localized in the radial coordinates and have p-state angular distributions. We argue that they can be described by a particular analytical class of squeezed states, called radial squeezed states. For hydrogenic Rydberg atoms, we discuss the time evolution of the corresponding hydrogenic radial squeezed states. They are found to undergo decoherence and collapse, followed by fractional and full revivals. We also present their uncertainty product and uncertainty ratio as functions of time. Our results show that hydrogenic radial squeezed states provide a suitable analytical description of hydrogenic Rydberg atoms excited by short-pulsed laser fields.Comment: published in Physical Review

    Keplerian Squeezed States and Rydberg Wave Packets

    Get PDF
    We construct minimum-uncertainty solutions of the three-dimensional Schr\"odinger equation with a Coulomb potential. These wave packets are localized in radial and angular coordinates and are squeezed states in three dimensions. They move on elliptical keplerian trajectories and are appropriate for the description of the corresponding Rydberg wave packets, the production of which is the focus of current experimental effort. We extend our analysis to incorporate the effects of quantum defects in alkali-metal atoms, which are used in experiments.Comment: accepted for publication in Physical Review

    Elliptical Squeezed States and Rydberg Wave Packets

    Get PDF
    We present a theoretical construction for closest-to-classical wave packets localized in both angular and radial coordinates and moving on a keplerian orbit. The method produces a family of elliptical squeezed states for the planar Coulomb problem that minimize appropriate uncertainty relations in radial and angular coordinates. The time evolution of these states is studied for orbits with different semimajor axes and eccentricities. The elliptical squeezed states may be useful for a description of the motion of Rydberg wave packets excited by short-pulsed lasers in the presence of external fields, which experiments are attempting to produce. We outline an extension of the method to include certain effects of quantum defects appearing in the alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199

    Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms

    Full text link
    This paper begins with an examination of the revival structure and long-term evolution of Rydberg wave packets for hydrogen. We show that after the initial cycle of collapse and fractional/full revivals, which occurs on the time scale trevt_{\rm rev}, a new sequence of revivals begins. We find that the structure of the new revivals is different from that of the fractional revivals. The new revivals are characterized by periodicities in the motion of the wave packet with periods that are fractions of the revival time scale trevt_{\rm rev}. These long-term periodicities result in the autocorrelation function at times greater than trevt_{\rm rev} having a self-similar resemblance to its structure for times less than trevt_{\rm rev}. The new sequence of revivals culminates with the formation of a single wave packet that more closely resembles the initial wave packet than does the full revival at time trevt_{\rm rev}, i.e., a superrevival forms. Explicit examples of the superrevival structure for both circular and radial wave packets are given. We then study wave packets in alkali-metal atoms, which are typically used in experiments. The behavior of these packets is affected by the presence of quantum defects that modify the hydrogenic revival time scales and periodicities. Their behavior can be treated analytically using supersymmetry-based quantum-defect theory. We illustrate our results for alkali-metal atoms with explicit examples of the revival structure for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199

    Atomic Supersymmetry, Rydberg Wave Packets, and Radial Squeezed States

    Get PDF
    We study radial wave packets produced by short-pulsed laser fields acting on Rydberg atoms, using analytical tools from supersymmetry-based quantum-defect theory. We begin with a time-dependent perturbative calculation for alkali-metal atoms, incorporating the atomic-excitation process. This provides insight into the general wave packet behavior and demonstrates agreement with conventional theory. We then obtain an alternative analytical description of a radial wave packet as a member of a particular family of squeezed states, which we call radial squeezed states. By construction, these have close to minimum uncertainty in the radial coordinates during the first pass through the outer apsidal point. The properties of radial squeezed states are investigated, and they are shown to provide a description of certain aspects of Rydberg atoms excited by short-pulsed laser fields. We derive expressions for the time evolution and the autocorrelation of the radial squeezed states, and we study numerically and analytically their behavior in several alkali-metal atoms. Full and fractional revivals are observed. Comparisons show agreement with other theoretical results and with experiment.Comment: published in Physical Review

    Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance

    Get PDF
    Background: In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds – the most detrimental disturbance agent in Europe – monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Methodology/Principal Findings: Here we show that growth reduction was significant and pervasive in a 6.79?million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10 % in the worst hit regions, and was closely related to maximum gust wind speed (R 2 = 0.849) and structural wind damage (R 2 = 0.782). At the landscape scale, windrelated growth reduction amounted to 3.0 million m 3 in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden

    Using indirect methods to constrain symbiotic nitrogen fixation rates : a case study from an Amazonian rain forest

    Get PDF
    © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biogeochemistry 99 (2010): 1-13, doi:10.1007/s10533-009-9392-y.Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle. To address this gap, we used a pair of indirect methods—analytical modeling and N balance—to generate independent estimates of BNF in a presumed hotspot of N fixation, a tropical rain forest site in central Rondônia in the Brazilian Amazon Basin. Our objectives were to attempt to constrain symbiotic N fixation rates in this site using indirect methods, and to assess strengths and weaknesses of this approach by looking for areas of convergence and disagreement between the estimates. This approach yielded two remarkably similar estimates of N fixation. However, when compared to a previously published bottom-up estimate, our analysis indicated much lower N inputs via symbiotic BNF in the Rondônia site than has been suggested for the tropics as a whole. This discrepancy may reflect errors associated with extrapolating bottom-up fluxes from plot-scale measures, those resulting from the indirect analyses, and/or the relatively low abundance of legumes at the Rondônia site. While indirect methods have some limitations, we suggest that until the technological challenges of directly measuring N fixation are overcome, integrated approaches that employ a combination of model-generated and empirically-derived data offer a promising way of constraining N inputs via BNF in natural ecosystems.We acknowledge and are grateful for financial support from the Andrew W. Mellon Foundation (C.C. and B.H.), the National Science Foundation (NSF DEB-0515744 to C.C. and A.T. and DEB-0315656 to C.N.), and the NASA LBA Program (NCC5-285 to C.N.)
    corecore