293 research outputs found

    Understanding the solar-driven reduction of CO2 on doped ceria

    Get PDF
    With the appropriate materials, one can construct redox cycles that use CO2 as the oxidant, generating CO as the product. Here, we investigate thermochemical cycles using doped ceria compounds as the oxygen exchange medium. Doped samples are prepared using La, Cr, W, Zr, V, Y, and Ti as dopants. Studying the redox kinetics, we show that doping the pure ceria with zirconium strongly increases overall CO production, albeit at lower reaction rates. This is because the CO2 reduction step is second-order with respect to Ce(III). Doping the fluorite lattice with zirconium cations decreases the number of Ce(III) ions at the surface, and consequently slows down the reaction. This result is counter-intuitive, since normally you would think that the more reduction, the better. But the reactivity towards CO2 is actually determined by the surface Ce(III) ions, and so migration of dopant ions on the surface reduces its reactivity, even though the bulk Ce(III) concentration is higher. Our results demonstrate the importance of understanding surface kinetics when designing oxygen exchange materials for solar reactors.We thank the Dutch National Research School Combination Catalysis (NRSC-C) for funding

    Titania-catalysed oxidative dehydrogenation of ethyl lactate: effective yet selective free-radical oxidation

    Get PDF
    We research here the catalytic oxidative dehydrogenation of ethyl lactate, as an alternative route to ethyl pyruvate. Testing various solid catalysts (Fe2O3, TiO2, V2O5/MgO–Al2O3, ZrO2, CeO2 and ZnO), we find that simple and inexpensive TiO2 efficiently catalyses this reaction under mild conditions. Furthermore, molecular oxygen was used as the terminal oxidant. Importantly, this reaction runs well also using inexpensive commercial solvent mixtures. Both the desired reaction and the by-products formation follow a free-radical mechanism. Remarkably, adding activated carbon, a solid radical scavenger, hardly affects the catalytic activity, but enhances the product selectivity. This is because this solid radical scavenger hampers the formation of undesired products in solution, without suppressing the oxidation at the catalyst surface

    Early Season Monitoring of Tarnished Plant Bug, Lygus lineolaris, in Wild Hosts Using Pheromone Traps

    Get PDF
    Simple Summary The tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), is a polyphagous pest and causes severe economic damage to cotton crops. Managing the weedy field edges is important in preventing early-season infestations of L. lineolaris in cotton to prevent damage to the squares and other fruiting structures. Scouting fields for L. lineolaris is time- and labor-intensive, and end-user variability associated with field sampling can lead to inaccuracies. Insect traps that combine visual cues and pheromones are more accurate, sustainable, and economically feasible in contrast to traditional insect detection methods. In this study, we investigated the application of red or white sticky cards baited with the female-produced sex pheromone to monitor the overwintering L. lineolaris populations in early spring. Field experiments demonstrated that the red sticky cards baited with a pheromone blend containing hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal in a 4:10:7 ratio are highly effective in trapping L. lineolaris adults in early spring before the row crops are planted, and in monitoring their movement into a cotton crop. Abstract The tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), has a wide host range of over 700 plant species, including 130 crops of economic importance. During early spring, managing the field edges with weeds and other wild hosts is important in preventing early-season infestations of L. lineolaris in cotton to prevent damage to the squares and other fruiting structures. Scouting fields for L. lineolaris is time- and labor-intensive, and end-user variability associated with field sampling can lead to inaccuracies. Insect traps that combine visual cues and pheromones are more accurate, sustainable, and economically feasible in contrast to traditional insect detection methods. In this study, we investigated the application of red or white sticky cards baited with the female-produced sex pheromone to monitor overwintering L. lineolaris populations in early spring. Field experiments demonstrated that the red sticky cards baited with a pheromone blend containing hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal in 4:10:7 ratio are highly effective in trapping L. lineolaris adults in early spring before the row crops are planted, and in monitoring their movement into a cotton crop. The monitoring of L. lineolaris should help growers to make judicious decisions on insecticide applications to control early pest infestations, thereby reducing economic damage to cotton

    Enhancing catalytic epoxide ring-opening selectivity using surface-modified Ti3C2Tx MXenes

    Get PDF
    MXenes are a new family of two-dimensional carbides and/or nitrides. Their 2D surfaces are typically terminated by O, OH and/or F atoms. Here we show that Ti3C2Tx—the most studied compound of the MXene family—is a good acid catalyst, thanks to the surface acid functionalities. We demonstrate this by applying Ti3C2Tx in the epoxide ring-opening reaction of styrene oxide (SO) and its isomerization in the liquid phase. Modifying the MXene surface changes the catalytic activity and selectivity. By oxidizing the surface, we succeeded in controlling the type and number of acid sites and thereby improving the yield of the mono-alkylated product to >80%. Characterisation studies show that a thin oxide layer, which forms directly on the Ti3C2Tx surface, is essential for catalysing the SO ring-opening. We hypothesize that two kinds of acid sites are responsible for this catalysis: In the MXene, strong acid sites (both Lewis and Brþnsted) catalyse both the ring-opening and the isomerization reactions, while in the Mxene–TiO2 composite weaker acid sites catalyse only the ring-opening reaction, increasing the selectivity to the mono-alkylated product.TKS was supported by the NWO TOP-PUNT Catalysis in Confined Spaces (Grant 718.015.004). EVRF and ASE acknowledge financial support by MINECO (Spain) through the projects MAT2017-86992-R and MAT2016-80285-P. VN and MWB thank NSF DMR 1740795 for financial support

    Surface oxidation of Ti3C2Tx enhances the catalytic activity of supported platinum nanoparticles in ammonia borane hydrolysis

    Get PDF
    MXenes, first discovered in 2011, are two-dimensional transition metal carbides or nitrides. Because of their interesting electrical and optical properties, they are studied for applications in batteries, supercapacitors and electrocatalysis. However, MXenes are rarely used in heterogeneous catalysis and, to our knowledge, there are no reports on the use of oxidized MXenes in catalysis. Here we used Ti3C2Tx-derived materials as supports for platinum nanoparticles and studied their effectiveness for the hydrolysis of ammonia borane, which is a promising hydrogen carrier. Hydrogen can be released from ammonia borane through catalytic hydrolysis. Most heterogeneous catalysts reported for this purpose contain a noble metal supported on a metal oxide support. The interaction between the metal and the support is important in determining the catalytic performance. Our results show that the electronic environment of platinum can be modified by oxidising the surface of MXene, thus providing a new way of developing active catalysts. Oxidising agents such as water and ozone can be used for this purpose. This electronic modification enhances the catalytic activity of platinum for ammonia borane hydrolysis, which is relevant for other reactions related to energy production/storage.T K S was supported by NWO TOP-PUNT grant 718.015.004. Z S was supported by project LTAUSA19034 from Ministry of Education Youth and Sports (MEYS). E V R F and A S E would like to thanks financial support by MINECO (Spain) through the projects MAT2017-86992-R and MAT2016-80285-P

    Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti2AlC MAX Phase

    Get PDF
    MAX (M(n+1)AX(n)) phases are layered carbides or nitrides with a high thermal and mechanical bulk stability. Recently, it was shown that their surface structure can be modified to form a thin non-stoichiometric oxide layer, which can catalyze the oxidative dehydrogenation of butane. Here, the use of a Ti2AlC MAX phase as a support for cobalt oxide was explored for the dry reforming of butane with CO2, comparing this new catalyst to more traditional materials. The catalyst was active and selective to synthesis gas. Although the surface structure changed during the reaction, the activity remained stable. Under the same conditions, a titania-supported cobalt oxide catalyst gave low activity and stability due to the agglomeration of cobalt oxide particles. The Co3O4/Al(2)O(3)catalyst was active, but the acidic surface led to a faster deactivation. The less acidic surface of the Ti2AlC was better at inhibiting coke formation. Thanks to their thermal stability and acid-base properties, MAX phases are promising supports for CO(2)conversion reactions

    Case-Control Study of Fetal Microchimerism and Breast Cancer

    Get PDF
    Prior pregnancy is known to protect against development of breast cancer. Recent studies have demonstrated that pregnancy has the capacity to establish small numbers of immunologically active fetal-derived cells in the mother, a phenomenon known as fetal microchimerism (FMc). We asked whether presence of FMc, routinely acquired during pregnancy, is a protective factor for breast cancer.DNA extracts from peripheral blood specimens were obtained from a population-based case-control study of risk factors for breast cancer in women 21 to 45 years old. Specimens were tested with quantitative PCR for presence and concentrations of male DNA presumed to derive from prior pregnancies with a male fetus. Odds ratios (OR) and 95% confidence intervals (CI) were estimated with consideration of multiple established reproductive and environmental risk factors for breast cancer. FMc results were generated on 99 parous women, 54 with primary invasive breast cancer and 45 general population controls. FMc prevalence was 56% (25/45) and 26% (14/54) in controls and cases, respectively. Women harboring FMc were less likely to have had breast cancer (OR = 0.29, 95% CI 0.11-0.83; p = 0.02, adjusting for age, number of children, birth of a son, history of miscarriage, and total DNA tested). In addition, FMc concentrations were higher in controls versus cases (p = 0.01). Median concentrations were 2 (0-78) and 0 (0-374) fetal genomes/10(6) maternal genomes in controls and cases, respectively.Results suggest that the enigma of why some parous women are not afforded protection from breast cancer by pregnancy might in part be explained by differences in FMc. Mechanistic studies of FMc-derived protection against breast cancer are warranted

    Molybdenum Oxide Supported on Ti3AlC2 is an Active Reverse Water−Gas Shift Catalyst

    Get PDF
    MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti(3)AlC(2 )MAX phase as a support for molybdenum oxide for the reverse water-gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts

    Prescription opioid use before and after kidney transplant: Implications for posttransplant outcomes

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146648/1/AJT14714-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146648/2/ajt14714_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146648/3/ajt14714.pd
    • 

    corecore